Bemessung Versickerungsgraben

Abschnitt: km 43,751 - km 43,585 bahnlinks der Strecke 1120

Berechnung nach ATV-A138

Bemessung mittels örtlicher Regendaten aus KOSTRA-Atlas (Spaltennr.: 147, Zeilennr.: 80)

Parameter:

Mittlerer Abflußbeiwert KG1 ψ _{m,i}	0,4
Mittlerer Abflußbeiwert KG2 $\psi_{m,i}$	0,2
Mittlerer Abflußbeiwert KG2+FTG $\psi_{m,i}$	0,6
Mittlerer Abflußbeiwert Böschung $\psi_{m,i}$	0,2
Mittlerer Abflußbeiwert Bahnsteig $\psi_{m,i}$	0,9
gewählte Regenhäufigkeit n	0,1
Zuschlagsfaktor f _Z	1,2
Abminderungsfaktor f _A	1,0

Einzugsfläche A_F für Bahngraben

Emzagonacho / Emar Barrigiacon								
Breiten	[m]	Längen	[m]	Einzugsflächen	[m²]			
b _{Planum, KG1} =	5,60	L _{Planum, KG1} =	167,00	A _{Planum, KG1} =	935,20			
b _{Planum, KG2} =	0,00	L _{Planum, KG2} =		A _{Planum, KG2} =	0,00			
b _{Planum, KG2+FTG} =	0,00	L _{Planum, KG2+FTG} =	0,00	A _{Planum, KG2+FTG} =	0,00			
b _{Böschung} =	5,30	L _{Böschung} =	167,00	A _{Böschung} =	885,10			
b _{Bahnsteig} =		L _{Bahnsteig (inkl. Option)} =		A _{Bahnsteig} =	1599,00			

 $A_E = \Sigma A_{E,i} = 3419,30$

Einzugsfläche der "undurchlässigen" Fläche A_U für Bahngraben

$A_u = \Sigma(A_{E,i} * \psi_{m,i}) / 10000$		[ha]
$A_u =$	0,1990	ha

Ermittlung der Versickerungsrate Bahngraben (nach DWA A 138)

 $Q_s = A_s \times k_f/2$

Länge $_{Grabensohle}$ =167,00 mLänge $_{GrabenOK}$ =168,2 mgew. Stautiefe $_{Graben}$ =0,30 mBreite $_{GrabenOK}$ =2,4 mBreite GrSohle =1,20 mBöNeigung m =1: 2,0

 $As = 200,40 \text{ m}^2$ $k_f = 0,00002 \text{ m/s}$ $Q_s = 0,00200 \text{ m}^3/\text{s}$

Ermittlung vorhandenen Speichervolumen V_{vorh.}

 $V_{\text{vorh. Graben}}$ = [TiefeGraben * (BreiteGrabensohle + m * TiefeGraben)] * LängeGraben $V_{\text{vorh. Graben}}$ = 90,18 m³

Ermittlung maximal erforderliches Speichervolumen V_{max erf.}

$$V_{erf} = (Q_{zu} - Q_s) * D * 60 * f_z$$
 $Q_{zu} = A_{red} * r_{D(0,1)}$
 $A_{red} = 0,1990$ ha

örtliche Regendaten (Ahrensburg)

ortifiche Regendateri (Ar	ir crisbarg)			-
Regendauer D [min]	r _{D(0,1)} [I/s*ha]	O _{zu} [m³/s]	$V_{\rm erf.}$	
5 min	256,7	0,0511	17,6704	
10 min	226,7	0,0451	31,0420	
15 min	173,3	0,0345	35,0851	
20 min	142,5	0,0284	37,9531	
30 min	107,2	0,0213	41,7548	
45 min	80,7	0,0161	45,5444	
60 min	56,8	0,0113	40,1775	
90 min	49,4	0,0098	50,7228	
120 min	40,4	0,0080	52,1546	MAX
180 min	30,0	0,0060	51,4071	
240 min	24,7	0,0049	50,3158	
360 min	18,5	0,0037	43,4904	
540 min	13,8	0,0027	28,8675	
720 min	11,3	0,0022	12,6970	
1080 min	8,4	0,0017	-25,8344	
1440 min	6,9	0,0014	-65,3974	
2880 min	4,2	0,0008	-242,2205	
4320 min	3,1	0,0006	-431,4243	

$$V_{\text{max erf.}} = 52,155 \text{ m}^3$$

Die gewählten Abmessungen der Graben-Versickerung sind ausreichend, da V_{erf} < V_{vorh.}

$$V_{erf.} = 52,15 \text{ m}^3 < 90,18 \text{ m}^3 = V_{vorh.}$$

Ermittlung der Einstauhöhe

$$z_m = V_{erf.} / A_s$$

 $z_m = 0,26 \text{ m} \leq 0,30 \text{ m} = \text{gew. Stautiefe Graben}$

Ermittlung der Entleerungszeit

vorh.
$$t_E = 2 * z_M/k_{f,M} =$$

vorh. $t_E =$ 7,23 h < 24 h = erford. t_E

Die Querung am km 303,435 für die Einleitung des Oberflächenwassers im Bereich Bahnsteig Hp Ahrensburg-West in den Versickerungsgraben erfolgt mit UP DN 250 mit 4 ‰ Gefälle und einer Länge von 18 m.