Neubau

der

Bundesautobahn

Von Bau-km 14+200 bis Bau-km 16+100

von NK 2125 026 - 0,900 km

nach NK 2125 026+1,000 km

Nächster Ort: Bad Bramstedt, Lentföhrden

Baulänge:

1,900 km

Landesbetrieb Straßenbau und Verkehr Schleswig-Holstein

Planfeststellung

Neubau A 20 Nord-West-Umfahrung Hamburg

Teil B Autobahnkreuz A20 / A7

Wassertechnische Berechnungen

Aufgestellt: Landesbetrieb Straßenbau und Verkehr Schleswig-Holstein - Niederlassung Itzehoe -	
gez. Kohlsaat	
Itzehoe, den 29.06.2009	
Bearbeitet: BRW Ingenieurpartnerschaft	
gez. Wasmund	-
Bad Segeberg, den 29.06.2009	801

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

Inhaltsverzeichnis

	577	
13.1.1	Entwässerungsabschnitt RRB 08	3
13.1.2	Entwässerungsabschnitt A7 – 02	12
13.1.3	Entwässerungsabschnitt A7 - 01	20
13.1.4	Entwässerungsabschnitt 09	28
13.1.5	Entwässerungsabschnitt A7 – 03	37

13.1.1 Entwässerungsabschnitt RRB 08

RRB 08

Berechnung der maßgeblichen Bemessungswerte

gewählter Drosselabfluss gemäß Vereinbarung mit dem Kreis Segeberg

Drosselabflussspende $q_{Dr,R,u}$ = 0,6 l/(s•ha)

 $Q_{ab} = 0,408 \text{ l/s}$

mind. Jedoch Q_{ab} = 2,0 l/s

gewählter Drosselabfluss = 2,0 l/s

entspricht = 2,94 l/(s•ha)

			2,94		
Dauerstufe D	Niederschlags- höhe h N für n=0,5/a	Zugehörige Regenspende r	Drossel- abflussspende q Dr,R,u	Differenz zwischen r und q Dr,R,u	spezifisches Speicher- volumen Vs,u
[min]	[mm]	[l/(s•ha)]	[l/(s•ha)]	[l/(s•ha)]	[m³/ha]
20	13,2	110,0	2,94	107,1	128,5
30	15,3	84,7	2,94	81,8	147,2
45	17,6	65,3	2,94	62,4	168,4
60	19,5	54,3	2,94	51,4	184,9
90	21,5	39,8	2,94	36,9	199,0
120	23,0	31,9	2,94	29,0	208,5
180	25,3	23,4	2,94	20,5	220,9
240	27,0	18,8	2,94	15,9	228,3
360	29,7	13,8	2,94	10,9	234,5
540	32,7	10,1	2,94	7,2	231,9
720	35,1	8,1	2,94	5,2	222,8
1080	38,1	5,9	2,94	3,0	191,6
1440	41,2	4,8	2,94	1,9	160,4
2880	49,0	2,8	2,94	-0,1	-24,8
4320	54,8	2,1	2,94	-0,8	-218,6
5760	60,6	1,7	2,94	-1,2	-429,7

extrapoliert

Das maßgebliche Regenereignis bestimmt sich aus der Tabelle mit

 $r_{360(0,5)} = 13,8 \text{ l/(s•ha)}$

Das spezifische Speichervolumen beträgt

234,5 m³/ha

Dauerstufe

360 min

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RRB 08

Bemessung des Absetzbeckens

Bemessungszufluss

Erforderliche Oberfläche

Q_{Bem}

$$O_{erf}$$
 = Q_{Bem} / (1000 • v_s) [m^2]
 O_{erf} = Erforderliche Oberfläche
 Q_{Bem} = Bemessungszufluss
 v_s = Steiggeschwindigkeit [m/s]
 v_s = 0,0025 m/s
 O_{erf} = 27,94 m^2

69,853 l/s

Erforderliche Fläche unter der Tauchwand

$$\begin{array}{lll} A_{Tw} & = Q_{Bem} \ / \ (1000 \cdot v_{horiz}) & [\ m^2\] \\ Q_{Bem} & = Bemessungszufluss \\ v_{horiz} & = Horizontale Durchflussgeschwindigkeit unter der Tauchwand [\ m/s\] \\ v_{horiz} & = 0.05 \ m/s \\ A_{Tw} & = 1,40 \ m^2 \end{array}$$

Erforderliches Schlammstapelvolumen

$$V_{sch}$$
 = $A_u \cdot 1.0 \text{ m}^3 / (ha \cdot a)$ [m^3] V_{sch} = 0.68 m^3

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RRB 08

Gewählte Abmessungen

Ständiger Wasserstand	t	=	2,00 m
Eintauchtiefe der Tauchwand	t_{Tw}	=	0,30 m
Höhe unter der Tauchwand	h_{Tw}	=	1,70 m
Höhe des Ölspeicherraumes	h _{Öl}	=	0,30 m
Höhe des Schlammstapelraumes	h _{Sch}	=	0,20 m
Breite der Beckensohle	b_{So}	=	2,00 m

Oberfläche des ständigen Wasserstandes im Absetz-

becken (bis Tauchwand)

digital ermittelt (ACAD) $O_{Abs} = 103,65 \text{ m}^2$

Fläche der Beckensohle im Absetzbecken:

digital ermittelt (ACAD) $A_{So} = 19,52 \text{ m}^2$ mittlere Beckenlänge im Bereich des Wassers $L_{mittel} = 14,00 \text{ m}$ mittlere Beckenbreite im Bereich des Wassers $b_{mittel} = 6,00 \text{ m}$

Nachweise:

Hydraulisch anrechenbare Oberfläche

$$O_{hyd}$$
 = $(O_{Abs} + A_{So}) / 2$ [m^2]
 O_{hyd} = $61,585 m^2$ > $27,94 m^2$

Fläche unter der Tauchwand

$$A_{Tw}$$
 = $b_{So} \cdot h_{Tw} + 2 \cdot h_{Tw}^2$ [m²]
 A_{Tw} = 8,78 m² > 1,40 m²

Ölspeichervolumen

$$V_{OI}$$
 = $O_{Abs} \cdot h_{OI}$ [m^3]
 V_{OI} = 31,095 m^3 > 30,00 m^3

Schlammstapelvolumen:

$$V_{sch}$$
 = $A_{So} \cdot h_{Sch}$ [m³]
 V_{sch} = 3,90 m³ > 0,68 m³

Seitenverhältnis

$$L_{mittel} / b_{mittel} = 2,33$$

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RRB 08

Bemessungsdaten für das Wasserspiegeldiagram

Lastfall: zweijähriges Ereignis

Absetzbecken

Ruhewasserspiegel [Wsp]	13,20	mNN
Abflussspende	13,80	l/s•ha
Einzugsgebiet, Ared	0,68	ha
maxZufluss	9,38	l/s
Dauerstufe	360	min
theoretische Wasserfläche bei 0,5 m	211,62	m²
über Awsp Ruhewasserspiegel		
Awsp Ruhewasserspiegel	160,63	m²
ideelle Kegelspitze	5,413	m

Regenrückhaltebecken

Ruhewasserspiegel [Wsp]	12,80	mNN
Stauhöhe Regenrückhaltebecken	0,40	m
theoretische Wasserfläche bei 0,5 m	415	m²
über Awsp Ruhewasserspiegel		
Awsp Ruhewasserspiegel	303	m²
ideelle Kegelspitze	4,697	m

Maßgebende Ruhewasserspiegelfläche Regenrückha

ege	lfläche	Regenrüc	khalte	becken
	haaratia	aha 11/0000	-da aba	ha: 0 F

theoretische Wasserläche bei 0,5 m	415 m ²
über Awsp Ruhewasserspiegel	
Awsp Ruhewasserspiegel	303 m²
ideelle Kegelspitze	4,697 m

Ablauforgan	Kreisdrossel	
Durchmesser	70	mm
Abflußbeiwert µ	0,58	
Einbauhöhe	12,80	mNN
Notüberlauf Regenrückhaltebecken		
Wehrbreite	2,00	m

Überfallbeiwert μ 0,40 Höhe der Überlaufkante 13,20 mNN

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RRB 08

Überschwemmungspolder

Sohle Überschwemmungspolder 12,60 mNN Ruhewasserspiegel Graben [Wsp] 12.40 mNN Stauhöhe Überschwemmungspolder 0,5 m theoretische Wasserfläche 1268 m²

bei 0,5 m über Apolder

1.041 m² APolder 4,824 m

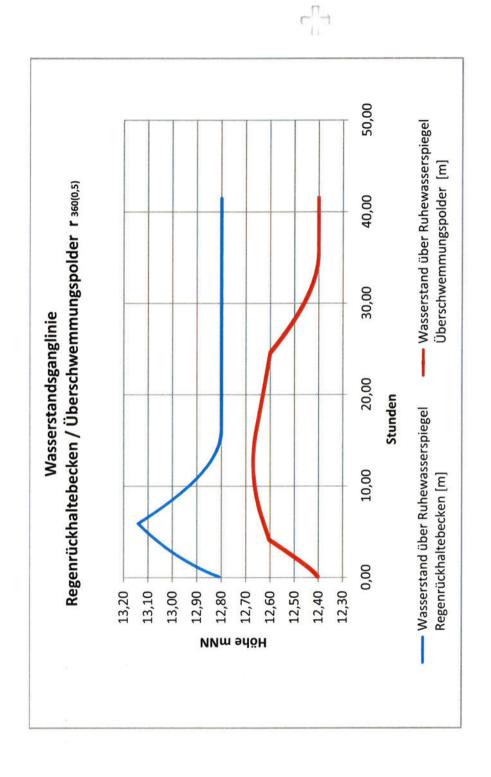
ideelle Kegelspitze Grabenlänge 64,00 m Sohlbreite 1,00 m

Böschungsneigung Graben 1: 2

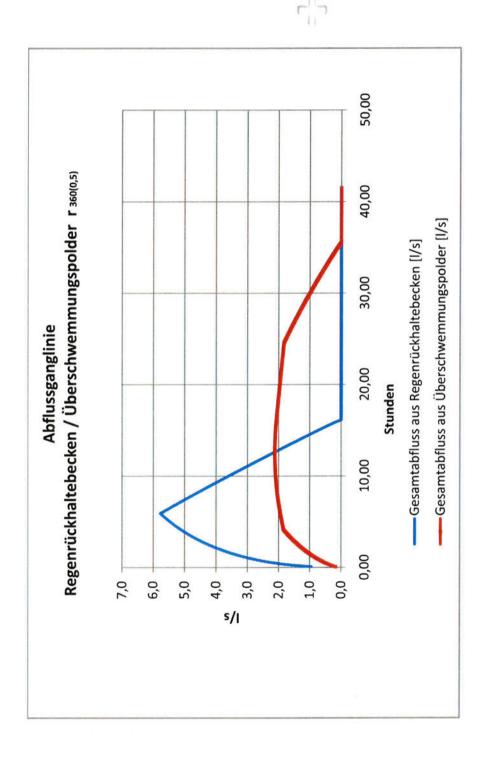
Ablauforgan Kreisdrossel

Durchmesser 45 mm 0,58 Abflußbeiwert µ

> 12,40 mNN Einbauhöhe


Notüberlauf Überschwemmungspolder

Wehrbreite 2,00 m


0,40 Überfallbeiwert µ

Höhe der Überlaufkante 12,90 mNN

Neubau der A20, Nord- West- Umfahrung Hamburg Teil B Autobahnkreuz A20 / A7

Neubau der A20, Nord- West- Umfahrung Hamburg Teil B Autobahnkreuz A20 / A7

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RRB 08

Streusalzeintrag in die oberirdischen Gewässer

Berechnung einer einzelnen Einleitsituation

spezifischer Streusalzeintrag pro Streugang

$$G = 20 \text{ g/m}^2$$

200 kg/ha

Betrachtete Entwässerungsabschnittsfläche

$$r_{15(1)} =$$

$$Q_{zu} =$$

$$Vr_{15(1)} =$$

Wasservolumen Regenrückhaltebecken

Volumen
$$V = 1,7 \cdot A_{rrb}$$

Abminderung durch Verdünnung im Regenrückhaltebecken

Salzkonzentration im Ablauf Regenrückhalte.

Abflussverhältnis

$$Q_{zu}/Q_{ab} =$$

Ablaufmenge des RRB

$$Q_{ab} =$$

Entleerungszeit =

31.434 s

8,7 h

Einleitung in den Vorfluter:

Gewässer A (Ohlau)

Mittelwasserführung des Vorfluters

$$A_e =$$

$$M_{\alpha} =$$

maximale Erhöhung der Salzkonzentration im Vorfluter =

0,003 g/l

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RRB 08

Berechnung der jährlichen Belastung

spezifischer Streusalzeintrag pro Streugang

 $G = 20 \text{ g/m}^2$

= 200 kg/ha

Anzahl der Streugänge / Jahr

= 15

Anteil des Direkteintrags

d = 100 %

Jahreshektarverbrauch

 $m_a = 3.000 \text{ kg/ha}$

Betrachtete Entwässerungsabschnittsfläche

Einzugsgebiet, A_{red}

0,6795 ha

Abflusswirksamer Jahresniederschlag von befestigten Flächen

N =

400 mm

Jahresvolumen (QA_{red})

 $V = 2.718 \text{ m}^3$

Jahressalzmasse

v – 2

m = 2.039 kg

Mittelwasserführung des Vorfluters :

Gewässer A (Ohlau)

 $A_e =$

39,84 km²

 $M_a =$

11 l/(s•km²)

MQ =

438,2 l/s

Jahresabflussvolumen

 $V = 13.819.225 \text{ m}^3$

Jahressalzmasse

m = 2.039 kg

Erhöhung der Salzkonzentration im Jahresdurchschnitt =

0,0001 g/l

13.1.2 Entwässerungsabschnitt A7 – 02

RRB A7 - 02

Berechnung der maßgeblichen Bemessungswerte

$$n = 0,5$$
 $r_{15(1)} = 102,8 \text{ l/(s•ha)}$
 $f_z = 1,0$
 $f_A = 1,0$
Einzugsgebiet, A_{red} 3,69 ha

gewählter Drosselabfluss gemäß Vereinbarung mit dem Kreis Segeberg

Drosselabflussspende q_{Dr.R.u}=

0,6 I/(s•ha)

Q_{ab} =

2,214 l/s

mind. jedoch Id. Jedoch Qab =

3,0 l/s

gewählter Drosselabfluss =

3,0 l/s

entspricht =

0,81 l/(s•ha)

			0,81		
Dauerstufe D	Niederschlags- höhe h _N für	Zugehörige Regenspende r	Drossel- abflussspende	Differenz zwischen	spezifisches Speicher-
	n=0,5/a		q _{Dr,R,u}	$r \text{ und } q_{\text{Dr,R,u}}$	volumen $V_{s,u}$
[min]	[mm]	[l/(s•ha)]	[l/(s•ha)]	[l/(s•ha)]	[m³/ha]
20	13,2	110,0	0,81	109,2	131,0
30	15,3	84,7	0,81	83,9	151,0
45	17,6	65,3	0,81	64,5	174,1
60	19,5	54,3	0,81	53,5	192,6
90	21,5	39,8	0,81	39,0	210,5
120	23,0	31,9	0,81	31,1	223,8
180	25,3	23,4	0,81	22,6	243,9
240	27,0	18,8	0,81	18,0	259,0
360	29,7	13,8	0,81	13,0	280,5
540	32,7	10,1	0,81	9,3	300,9
720	35,1	8,1	0,81	7,3	314,8
1080	38,1	5,9	0,81	5,1	329,6
1440	41,2	4,8	0,81	4,0	344,5
2880	49,0	2,8	0,81	2,0	343,4
4320	54,8	2,1	0,81	1,3	333,6
5760	60,6	1,7	0,81	0,9	306,5

extrapoliert

Das maßgebliche Regenereignis bestimmt sich aus der Tabelle mit

 $r_{1440(0,5)} = 4.8 \text{ l/(s•ha)}$

Das spezifische Speichervolumen beträgt

344,5 m³/ha

Dauerstufe

1440 min

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RRB A7 - 02

Bemessung des Absetzbeckens

Bemessungszufluss

Erforderliche Oberfläche

Q_{Bem}

$$\begin{array}{lll} O_{erf} & = Q_{Bem} \, / \, (1000 \cdot v_s \,) & [\,\,m^2\,] \\ O_{erf} & = Erforderliche \, Oberfläche \\ Q_{Bem} & = Bemessungszufluss \\ v_s & = Steiggeschwindigkeit \, [\,\,m/s\,] \\ v_s & = 0,0025 \,\,m/s \\ O_{erf} & = 151,73 \,\,m^2 \end{array}$$

379,332 l/s

Erforderliche Fläche unter der Tauchwand

$$\begin{array}{lll} A_{Tw} & = Q_{Bem} \ / \ (1000 \cdot v_{horiz}) & [\ m^2\] \\ Q_{Bem} & = Bemessungszufluss \\ v_{horiz} & = Horizontale \ Durchflussgeschwindigkeit \ unter \ der \ Tauchwand \ [\ m/s\] \\ v_{horiz} & = 0,05 \ m/s \\ A_{Tw} & = 7,59 \ m^2 \end{array}$$

Erforderliches Schlammstapelvolumen

$$V_{sch}$$
 = $A_u \cdot 1.0 \text{ m}^3 / (ha \cdot a)$ [m³]
 V_{sch} = 3.69 m³

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RRB A7 - 02

Gewählte Abmessungen

Ständiger Wasserstand	t	=	2,00 m
Eintauchtiefe der Tauchwand	t_{Tw}	=	0,30 m
Höhe unter der Tauchwand	h_{Tw}	=	1,70 m
Höhe des Ölspeicherraumes	höl	=	0,30 m
Höhe des Schlammstapelraumes	h_{Sch}	=	0,20 m
Breite der Beckensohle	b_{So}	=	6,00 m

Oberfläche des ständigen Wasserstandes im Absetz-

becken (bis Tauchwand)

digital ermittelt (ACAD) $O_{Abs} = 231,94 \text{ m}^2$

Fläche der Beckensohle im Absetzbecken:

digital ermittelt (ACAD) $A_{So} = 107,14 \text{ m}^2$ mittlere Beckenlänge im Bereich des Wassers $L_{mittel} = 22,00 \text{ m}$ mittlere Beckenbreite im Bereich des Wassers $b_{mittel} = 10,00 \text{ m}$

Nachweise:

Hydraulisch anrechenbare Oberfläche

$$O_{hyd}$$
 = $(O_{Abs} + A_{So}) / 2$ [m^2]
 O_{hyd} = 169,54 m^2 > 151,73 m^2

Fläche unter der Tauchwand

$$A_{Tw}$$
 = $b_{So} \cdot h_{Tw} + 2 \cdot h_{Tw}^2$ [m²]
 A_{Tw} = 14,78 m² > 7,59 m²

Ölspeichervolumen

$$V_{OI}$$
 = $O_{Abs} \cdot h_{OI}$ [m^3]
 V_{OI} = 69,582 m^3 > 30,00 m^3

Schlammstapelvolumen:

$$V_{sch}$$
 = $A_{So} \cdot h_{Sch}$ [m³]
 V_{sch} = 21,43 m³ > 3,69 m³

Seitenverhältnis

L_{mittel} / b_{mittel} = 2,20

RRB A7 - 02

Bemessungsdaten für das Wasserspiegeldiagramm

Lastfall: zweijähriges Ereignis

Absetzbecken

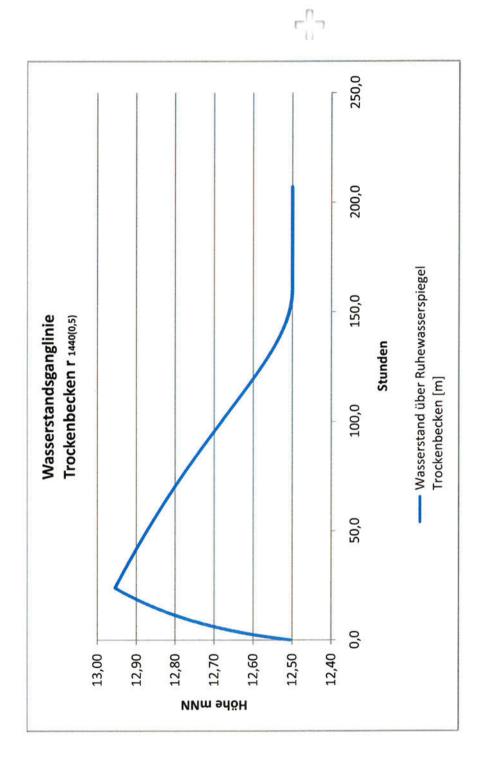
Jecken		
Ruhewasserspiegel [Wsp]	12,75 r	nNN
Abflussspende	4,80 1	/s•ha
Einzugsgebiet, A _{red}	3,69 h	na
maxZufluss	17,71 I	/s
Dauerstufe	1440 r	nin
theoretische Wasserfläche bei 0,5 m	417,01 r	n²
über Awsp Ruhewasserspiegel		
Awsp Ruhewasserspiegel	342,52 r	n²
ideelle Kegelspitze	7,737 r	n

Trockenbecken

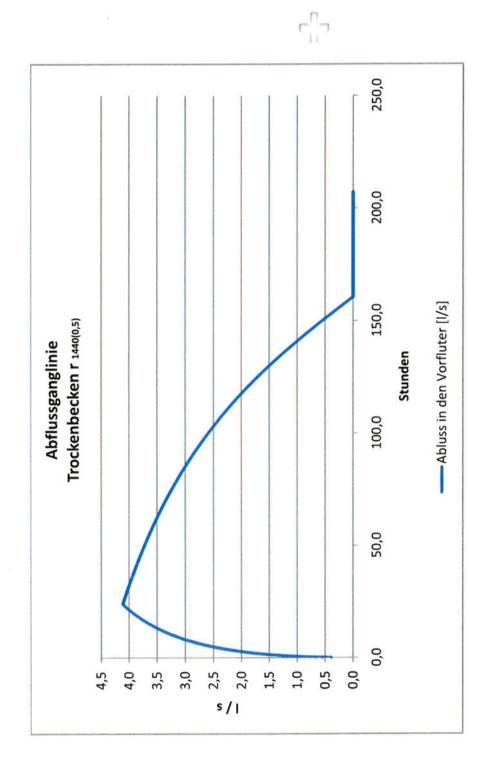
Oncon	beeken	
	Ruhewasserspiegel Flutmulde [Wsp]	12,50 mNN
	Stauhöhe Flutmulde	0,50 m
	AWsp bei h= 12,70 mNN	6.300 m ²
	im Trockenbecken	
	Awsp Ruhewasserspiegel Flutmulde	1.288 m ²
	ideelle Kegelspitze	0,660 m

Maßgebende Ruhewasserspiegelfläche Trockenbecken

AVVsp bei h= 12,70 mNN	6.300 m ²
im Trockenbecken	
Awsp Ruhewasserspiegel Flutmulde	1.288 m ²
ideelle Kegelspitze	0.660 m


Ablauforgan Kreisdrossel

Durchmesser	55 mm
Abflußbeiwert µ	0,58
Einbauhöhe	12,50 mNN


Notüberlauf

Wehrbreite	4,50 m
Überfallbeiwert μ	0,40
Höhe der Überlaufkante	13,00 mNN

Neubau der A20, Nord- West- Umfahrung Hamburg Teil B Autobahnkreuz A20 / A7

Neubau der A20, Nord- West- Umfahrung Hamburg Teil B Autobahnkreuz A20 / A7

RRB A7 - 02

Streusalzeintrag in die oberirdischen Gewässer

Berechnung einer einzelnen Einleitsituation

spezifischer Streusalzeintrag pro Streugang

$$G = 20 \text{ g/m}^2$$

200 kg/ha

Betrachtete Entwässerungsabschnittsfläche

Einzugsgebiet, A_{red} =

4,65 ha

 $r_{15(1)} =$

102,8 l/(s•ha)

 $Q_{zu} =$

478,0 l/s

Direkteintrag

100 %

Regenvolumen

430 m³

Salzmasse

930 kg

Konzentration im Zulauf

2,16 g/l

Wasservolumen Rückhaltebecken

Volumen $V = 1,7 \cdot A_{mb}$

2.190 m³

Abminderung durch Verdünnung im RRB

abmittel =

30%

Salzkonzentration im Ablauf RRB =

0,65 g/l

Abflussverhältnis

0,0079 $Q_{zu}/Q_{ab} =$

Ablaufmenge des RRB

 $Q_{ab} =$

3,0 l/s

Entleerungszeit =

143.406 s

39,8 h

Einleitung in den Vorfluter:

Schmalfelder Au

Mittelwasserführung des Vorfluters

 $A_e =$ 169,10 km²

 $M_q =$

11 I/(s•km²)

MQ =

1860,1 I/s

maximale Erhöhung der Salzkonzentration im Vorfluter =

0,001 g/l

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RRB A7 - 02

Berechnung der jährlichen Belastung

spezifischer Streusalzeintrag pro Streugang

 $G = 20 \text{ g/m}^2$

= 200 kg/ha

Anzahl der Streugänge / Jahr

= 15

Anteil des Direkteintrags

d = 100 %

Jahreshektarverbrauch

 $m_a = 3.000 \text{ kg/ha}$

Betrachtete Entwässerungsabschnittsfläche

Einzugsgebiet, Ared

4,65 ha

Abflusswirksamer Jahresniederschlag von befestigten Flächen

N =

400 mm

Jahresvolumen (QA_{red})

V =

18.600 m³

Jahressalzmasse

m =

13.950 kg

Mittelwasserführung des Vorfluters :

Schmalfelder Au

 $A_e = 169,15 \text{ km}^2$

 $M_q =$

11 I/(s•km²)

MQ = 1860,6 l/s

Jahresabflussvolumen

V = 58.676.244 m³

Jahressalzmasse

m =

13.950 kg

Erhöhung der Salzkonzentration im Jahresdurchschnitt = 0,000

0,0002 g/l

13.1.3 Entwässerungsabschnitt A7 - 01

RRB A7 - 01

Berechnung der maßgeblichen Bemessungswerte

n = 0,5 $r_{15(1)} = 102,8 \text{ l/(s} \cdot \text{ha)}$ $f_z = 1,0$ $f_A = 1,0$ Einzugsgebiet, $A_{red} = 0,96 \text{ ha}$

gewählter Drosselabfluss gemäß Vereinbarung mit dem Kreis Segeberg

Drosselabflussspende $q_{Dr,R,u} = 0,6 l/(s \cdot ha)$

 $Q_{ab} = 0,576 \text{ l/s}$

mind. jedoch d. Jedoch Q_{ab} = 2,0 l/s gewählter Drosselabfluss = 2,0 l/s

entspricht = 2,08 l/(s•ha)

			2,08		
Dauerstufe D	Niederschlags- höhe h_N für $n=0,5/a$	Zugehörige Regenspende r	Drossel- abflussspende $q_{\mathrm{Dr,R,u}}$	Differenz zwischen r und q _{Dr,R,u}	spezifisches Speicher- volumen V _{s,u}
[min]	[mm]	[l/(s•ha)]	[l/(s•ha)]	[l/(s•ha)]	[m³/ha]
20	13,2	110,0	2,08	107,9	129,5
30	15,3	84,7	2,08	82,6	148,7
45	17,6	65,3	2,08	63,2	170,7
60	19,5	54,3	2,08	52,2	188,0
90	21,5	39,8	2,08	37,7	203,7
120	23,0	31,9	2,08	29,8	214,7
180	25,3	23,4	2,08	21,3	230,2
240	27,0	18,8	2,08	16,7	240,7
360	29,7	13,8	2,08	11,7	253,1
540	32,7	10,1	2,08	8,0	259,7
720	35,1	8,1	2,08	6,0	259,9
1080	38,1	5,9	2,08	3,8	247,3
1440	41,2	4,8	2,08	2,7	234,7
2880	49,0	2,8	2,08	0,7	123,8
4320	54,8	2,1	2,08	0,0	4,3
5760	60,6	1,7	2,08	-0,4	-132,5

extrapoliert

Das maßgebliche Regenereignis bestimmt sich aus der Tabelle mit

 $r_{720(0,5)} = 8,1 \text{ l/(s•ha)}$

Das spezifische Speichervolumen beträgt

259,9 m³/ha

Dauerstufe

720 min

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RRB A7 - 01

Bemessung des Absetzbeckens

Bemessungszufluss

$$\begin{array}{lll} Q_{Bem} & = & Q_{tf(1)} & [\ l/s \] \\ Q_{tf(1)} & = & A_u \cdot r_{15(1)} \cdot \phi \ [\ l/s \] \\ Q_{Bem} & = & Bemessungszufluss \\ Q_{tf(1)} & = & Regenwasserzufluss für n = 1 \\ A_u & = & undurchlässige Fläche,angeschlossene Entwässerungsfläche \\ A_u & = & 0,96 \ ha \\ r_{15(1)} & = & Regenspende von 15 min und n = 1 \\ r_{15(1)} & = & 102,8 \ l/(s \cdot ha) \\ \phi_{tf(1)} & = & Zeitbeiwert aus Fließzeit \\ \phi_{tf(1)} & = & 1,00 \ nicht angesetzt \\ Q_{tf(1)} & = & 98,688 \ l/s \end{array}$$

Erforderliche Oberfläche

=

Q_{Bem}

```
O_{erf} = Q_{Bem} / (1000 • v_s) [ m^2 ]
O_{erf} = Erforderliche Oberfläche
Q_{Bem} = Bemessungszufluss
v_s = Steiggeschwindigkeit [ m/s ]
v_s = 0,0025 m/s
O_{erf} = 39,48 m^2
```

98,688 l/s

Erforderliche Fläche unter der Tauchwand

```
\begin{array}{lll} A_{Tw} & = Q_{Bem} \ / \ (1000 \cdot v_{horiz}) & [\ m^2\ ] \\ Q_{Bem} & = Bemessungszufluss \\ v_{horiz} & = Horizontale Durchflussgeschwindigkeit unter der Tauchwand [\ m/s\ ] \\ v_{horiz} & = 0,05 \ m/s \\ A_{Tw} & = 1,97 \ m^2 \end{array}
```

Erforderliches Schlammstapelvolumen

$$V_{sch}$$
 = $A_u \cdot 1.0 \text{ m}^3 / (ha \cdot a)$ [m³] V_{sch} = 0.96 m³

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RRB A7 - 01

Gewählte Abmessungen

Ständiger Wasserstand	t	=	2,00 m
Eintauchtiefe der Tauchwand	t_{Tw}	=	0,30 m
Höhe unter der Tauchwand	h_{Tw}	=	1,70 m
Höhe des Ölspeicherraumes	$h_{\ddot{\text{O}}\text{I}}$	=	0,30 m
Höhe des Schlammstapelraumes	h_{Sch}	=	0,20 m
Breite der Beckensohle	b_{So}	=	6,00 m

Oberfläche des ständigen Wasserstandes im Absetz-

becken (bis Tauchwand)

digital ermittelt (ACAD) $O_{Abs} = 231,94 \text{ m}^2$

Fläche der Beckensohle im Absetzbecken:

digital ermittelt (ACAD) $A_{So} = 107,14 \text{ m}^2$ mittlere Beckenlänge im Bereich des Wassers $L_{mittel} = 22,00 \text{ m}$ mittlere Beckenbreite im Bereich des Wassers $b_{mittel} = 8,00 \text{ m}$

Nachweise:

Hydraulisch anrechenbare Oberfläche

$$O_{hyd}$$
 = $(O_{Abs} + A_{So})/2$ [m^2]
 O_{hyd} = 169,54 m^2 > 39,48 m^2

Fläche unter der Tauchwand

$$A_{Tw}$$
 = $b_{So} \cdot h_{Tw} + 2 \cdot h_{Tw}^2$ [m²]
 A_{Tw} = 14,78 m² > 1,97 m²

Ölspeichervolumen

$$V_{OI}$$
 = $O_{Abs} \cdot h_{OI}$ [m^3]
 V_{OI} = 69,582 m^3 > 30,00 m^3

Schlammstapelvolumen:

$$V_{sch}$$
 = $A_{So} \cdot h_{Sch}$ [m³]
 V_{sch} = 21,43 m³ > 0,96 m³

Seitenverhältnis

$$L_{mittel} / b_{mittel} = 2,75$$

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RRB A7 - 01

Bemessungsdaten für das Wasserspiegeldiagram

Lastfall: zweijähriges Ereignis

Absetzbecken

16,20	mNN
8,10	l/s•ha
0,96	ha
7,78	I/s
720	min
417	m²
343	m²
7,726	m
	8,10 0,96 7,78 720 417

Ablauforgan Kreisdrossel

Durchmesser	70 mm
Abflußbeiwert µ	0,58
Einbauhöhe	16,20 mNN

Einbauhöhe

Notüberlauf Absetzbecken

Wehrbreite 1,50 m 0,60 Überfallbeiwert µ Höhe der Überlaufkante 16,60 mNN

Überschwemmungspolder

Sohle Überschwemmungspolder 15,50 mNN Ruhewasserspiegel Graben [Wsp] 15,30 mNN Stauhöhe Überschwemmungspolder 0,50 m theoretische Wasserfläche 2548,6 m² bei 0,5 m über Apolder AP older 2.261 m² ideelle Kegelspitze 8,104 m Grabenlänge 61,50 m 0,50 m Sohlbreite 2 Böschungsneigung Graben 1:

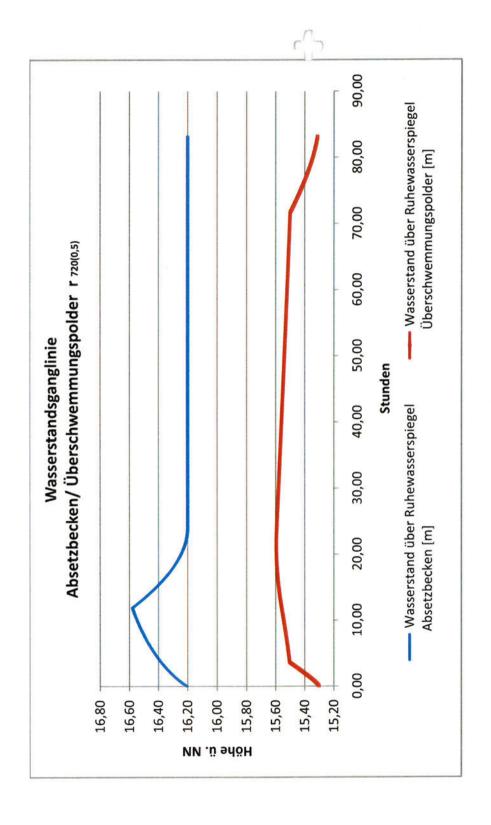
Ablauforgan Kreisdrossel

Durchmesser 35 mm

Abflußbeiwert µ 0,58

> Einbauhöhe 15,30 mNN

Notüberlauf Überschwemmungspolder


Wehrbreite 1,50 m

Überfallbeiwert μ 0.60

Höhe der Überlaufkante 15,80 mNN

Neubau der A20, Nord- West- Umfahrung Hamburg Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

Neubau der A20, Nord- West- Umfahrung Hamburg Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RRB A7 - 01

Streusalzeintrag in die oberirdischen Gewässer

Berechnung einer einzelnen Einleitsituation

spezifischer Streusalzeintrag pro Streugang

$$G = 20 \text{ g/m}^2 = 200 \text{ kg/ha}$$

Betrachtete Entwässerungsabschnittsfläche

Einzugsgebiet,
$$A_{red} = 0.96 \text{ ha}$$

 $r_{15(1)} = 102.8 \text{ l/(s•ha)}$
 $Q_{zu} = 98.7 \text{ l/s}$

Direkteintrag	d =	100 %
Regenvolumen	$Vr_{15(1)} =$	89 m³
Salzmasse	m =	192 kg

Volumen
$$V = 1.7 \times A_{rrb}$$
 582 m³

Abflussverhältnis

$$Q_{zu}/Q_{ab} = 0,0203$$

Ablaufmenge des RRB

$$Q_{ab} = 2.0 \text{ l/s}$$

Einleitung in den Vorfluter :

Schmalfelder Au

Mittelwasserführung des Vorfluters

$$A_e = 169,10 \text{ km}^2$$

$$M_q = 11 I/(s \cdot km^2)$$

 $MQ = 1860,1 I/s$

maximale Erhöhung der Salzkonzentration im Vorfluter = 0,001 g/l

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RRB A7 - 01

Berechnung der jährlichen Belastung

spezifischer Streusalzeintrag pro Streugang

 $G = 20 \text{ g/m}^2 = 200 \text{ kg/ha}$

Anzahl der Streugänge / Jahr = 15

Anteil des Direkteintrags d = 100 %

Jahreshektarverbrauch $m_a = 3.000 \text{ kg/ha}$

Betrachtete Entwässerungsabschnittsfläche

Einzugsgebiet, A_{red} 0,96 ha

Abflusswirksamer Jahresniederschlag von befestigten Flächen

N = 400 mm

Jahresvolumen (QA_{red}) V = 3.840 m³

Jahressalzmasse m = 2.880 kg

Mittelwasserführung des Vorfluters : Schmalfelder Au

 $A_e = 169,11 \text{ km}^2$

 $M_q = \frac{11 \text{ l/(s•km²)}}{}$

MQ = 1860,2 l/s

Jahresabflussvolumen V = 58.663.444 m³

Jahressalzmasse m = 2.880 kg

Erhöhung der Salzkonzentration im Jahresdurchschnitt = 0,00005 g/l

Entwässerungsabschnitt 09 13.1.4

RRB 09

Berechnung der maßgeblichen Bemessungswerte

$$n = 0,5$$
 $r_{15(1)} = 102,8 \text{ l/(s} \cdot \text{ha)}$
 $f_z = 1,0$
 $f_A = 1,0$
Einzugsgebiet, $A_{red} = 2,746 \text{ ha}$

gewählter Drosselabfluss gemäß Vereinbarung mit dem Kreis Segeberg

Drosselabflussspende q_{DrRu}=

0,6 l/(s•ha)

1,647 l/s

mind. Jedoch Q_{ab} =

3,0 l/s

gewählter Drosselabfluss =

3,0 l/s

entspricht =

 $Q_{ab} =$

1,09 I/(s*ha)

			1,09		
Dauerstufe D	Niederschlags- höhe h _N für n=0,5/a	Zugehörige Regenspende r	Drossel- abflussspende $q_{\mathrm{Dr,R,u}}$	Differenz zwischen r und q _{Dr,R,u}	spezifisches Speicher- volumen V _{s,u}
[min]	[mm]	[l/(s•ha)]	[l/(s•ha)]	[l/(s•ha)]	[m³/ha]
20	13,2	110,0	1,09	108,9	130,7
30	15,3	84,7	1,09	83,6	150,5
45	17,6	65,3	1,09	64,2	173,4
60	19,5	54,3	1,09	53,2	191,5
90	21,5	39,8	1,09	38,7	209,0
120	23,0	31,9	1,09	30,8	221,8
180	25,3	23,4	1,09	22,3	240,9
240	27,0	18,8	1,09	17,7	255,0
360	29,7	13,8	1,09	12,7	274,5
540	32,7	10,1	1,09	9,0	291,8
720	35,1	8,1	1,09	7,0	302,7
1080	38,1	5,9	1,09	4,8	311,5
1440	41,2	4,8	1,09	3,7	320,3
2880	49,0	2,8	1,09	1,7	295,0
4320	54,8	2,1	1,09	1,0	261,1
5760	60,6	1,7	1,09	0,6	209,9

extrapoliert

Das maßgebliche Regenereignis bestimmt sich aus der Tabelle mit

4,8 l/(s•ha) $r_{720(0.5)} =$

Das spezifische Speichervolumen beträgt

320,3 m³/ha

Dauerstufe

1440 min

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RRB 09

Bemessung des Absetzbeckens

Bemessungszufluss

Erforderliche Oberfläche

$$O_{erf}$$
 = Q_{Bem} / (1000 • v_s) [m^2]
 O_{erf} = Erforderliche Oberfläche
 Q_{Bem} = Bemessungszufluss
 v_s = Steiggeschwindigkeit [m/s]
 v_s = 0,0025 m/s
 O_{erf} = 112,91 m^2

Erforderliche Fläche unter der Tauchwand

```
\begin{array}{lll} A_{Tw} & = Q_{Bem} \ / \ (1000 \cdot v_{horiz}) & [\ m^2\ ] \\ Q_{Bem} & = Bemessungszufluss \\ v_{horiz} & = Horizontale Durchflussgeschwindigkeit unter der Tauchwand [\ m/s\ ] \\ v_{horiz} & = 0,05 \ m/s \\ A_{Tw} & = 5,65 \ m^2 \end{array}
```

Erforderliches Schlammstapelvolumen

$$V_{sch}$$
 = $A_u \cdot 1.0 \text{ m}^3 / (ha \cdot a)$ [m³] V_{sch} = 2,75 m³

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RRB 09

Gewählte Abmessungen

Ständiger Wasserstand	t	=	2,00 m
Eintauchtiefe der Tauchwand	t_{Tw}	=	0,40 m
Höhe unter der Tauchwand	h_{Tw}	=	1,60 m
Höhe des Ölspeicherraumes	höi	=	0,25 m
Höhe des Schlammstapelraumes	h _{Sch}	=	0,20 m
Breite der Beckensohle	b_{So}	=	3,00 m
Oberfläche des ständigen Wasserstandes irn Absetz-			
becken (bis Tauchwand)			
digital ermittelt (ACAD)	O_{Abs}	=	138,00 m²
Fläcke der Deelsenschle im Absetzbeelsen.			

Fläche der Beckensohle im Absetzbecken:

digital ermittelt (ACAD) $A_{So} = 23,84 \text{ m}^2$ mittlere Beckenlänge im Bereich des Wassers $L_{mittel} = 16,00 \text{ m}$ mittlere Beckenbreite im Bereich des Wassers $b_{mittel} = 5,00 \text{ m}$

Nachweise:

Hydraulisch anrechenbare Oberfläche

$$O_{hyd}$$
 = O_{Abs} [m^2]
 O_{hyd} = 138,00 m^2 > 112,91 m^2

Fläche unter der Tauchwand

$$A_{Tw}$$
 = $b_{So} \cdot h_{Tw} + 2 \cdot h_{Tw}^2$ [m²]
 A_{Tw} = 9,32 m² > 5,65 m²

Ölspeichervolumen

$$V_{\ddot{O}I}$$
 = $O_{Abs} \cdot h_{\ddot{O}I}$ [m³]
 $V_{\ddot{O}I}$ = 34,5 m³ > 30,00 m³

Schlammstapelvolumen:

$$V_{sch}$$
 = $A_{So} \cdot h_{Sch}$ [m³]
 V_{sch} = 4,77 m³ > 2,75 m³

Seitenverhältnis

$$L_{\text{mittel}}$$
 / b_{mittel} = 3,20

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RRB 09

Bemessungsdaten für das Wasserspiegeldiagram

Lastfall: zweijähriges Ereignis

Absetzbecken

one ii		
Ruhewasserspiegel [Wsp]	14,25	mNN
Abflussspende	4,80	l/s•ha
Einzugsgebiet, A _{red}	2,746	ha
maxZufluss	13,18	l/s
Dauerstufe	1440	min
heoretische Wasserfläche bei 0,5 m	260,03	m²
über Awsp Ruhewasserspiegel		
Awsp Ruhewasserspiegel	202,62	m²
ideelle Kegelspitze	6,022	m

Regenrückhaltebecken

Ruhewasserspiegel [Wsp]	13,80	mNN
Stauhöhe Regenrückhaltebecken	0,55	m
theoretische Wasserfläche bei 0,5 m	720	m²
über Awsp Ruhewasserspiegel		
Awsp Ruhewasserspiegel	581	m²
ideelle Kegelspitze	7,047	m

Maßgebende Ruhewasserspiegelfläche Regenrückhaltebecken

theoretische Wasserfläche bei 0,5 m	720 m²
über Awsp Ruhewasserspiegel	
Awsp Ruhewasserspiegel	581 m²
ideelle Kegelspitze	7,047 m

Ablauforgan	Kreisdrossel	
Durchmesser	100	mm
Abflußbeiwert µ	0,58	
Einbauhöhe	13,80	mNN
Notüberlauf Regenrückhaltebecken		

 $\begin{array}{ccc} Wehrbreite & 1,50 \text{ m} \\ & \ddot{\text{U}} \text{berfallbeiwert} \, \mu & 0,60 \\ H\ddot{\text{o}} \text{he der } \ddot{\text{U}} \text{berlaufkante} & 14,35 \text{ mNN} \\ \end{array}$

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RRB 09

Überschwemmungspolder

Sohle Überschwemmungspolder
Ruhewasserspiegel Graben [Wsp]
Stauhöhe Überschwemmungspolder
bei 0,5 m über Apolder

1,70 mNN
13,50 mNN
13,50 mNN
13,151 m²

Applies 12.686 m²

APolder 12.686 m²

ideelle Kegelspitze 27,529 m Grabenlänge 95,00 m

Sohlbreite 1,00 m

Böschungsneigung Graben 1: 2

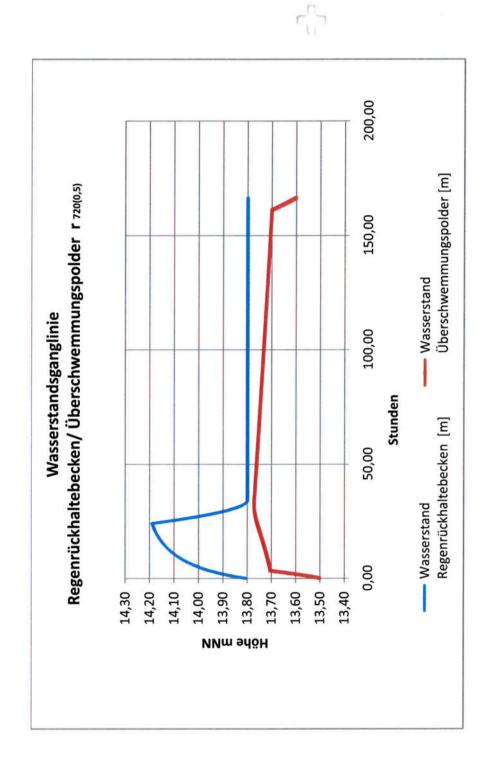
Ablauforgan Kreisdrossel

Durchmesser 45 mm

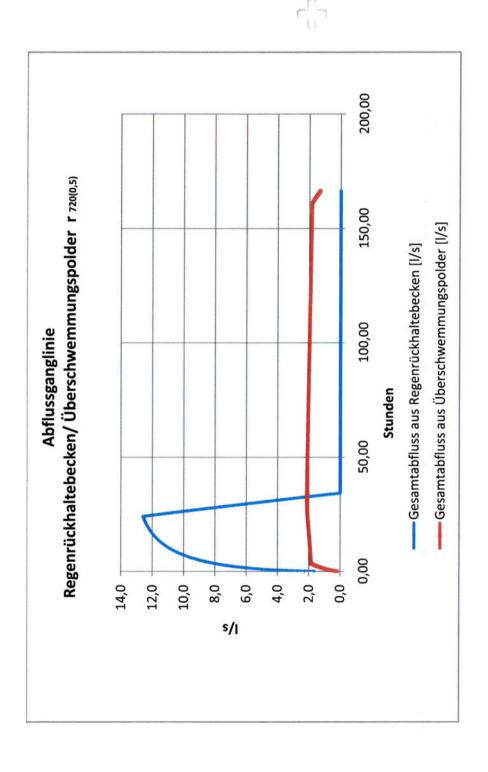
Abflußbeiwert µ 0,58

Einbauhöhe 13,50 mNN

Notüberlauf Überschwemmungspolder


Wehrbreite 3,00 m

Überfallbeiwert μ 0,40


Höhe der Überlaufkante 14,00 mNN

Neubau der A20, Nord- West- Umfahrung Hamburg Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

Neubau der A20, Nord- West- Umfahrung Hamburg Teil B Autobahnkreuz A20 / A7

RRB 09

Streusalzeintrag in die oberirdischen Gewässer

Berechnung einer einzelnen Einleitsituation

spezifischer Streusalzeintrag pro Streugang

$$G = 20 \text{ g/m}^2$$

200 kg/ha

Betrachtete Entwässerungsabschnittsfläche

Einzugsgebiet, A_{red} =

$$r_{15(1)} =$$

Direkteintrag

Regenvolumen

Salzmasse

$$m = 549,16342 \text{ kg}$$

Konzentration im Zulauf

Wasservolumen Rückhaltebecken

Volumen
$$V = 1,7 \cdot A_{rrb}$$

Abminderung durch Verdünnung im RRB

Salzkonzentration im Ablauf RRB =

Abflussverhältnis

$$Q_{zu}/Q_{ab} = 0,0106$$

Ablaufmenge des RRB

$$Q_{ab} =$$

Entleerungszeit =

Einleitung in den Vorfluter:

Schmalfelder Au

Mittelwasserführung des Vorfluters

$$M_q =$$

maximale Erhöhung der Salzkonzentration im Vorfluter =

0,0010 g/l

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RRB 09

Berechnung der jährlichen Belastung

spezifischer Streusalzeintrag pro Streugang

 $G = 20 \text{ g/m}^2$

200 kg/ha

Anzahl der Streugänge / Jahr

= 15

Anteil des Direkteintrags

d =

Jahreshektarverbrauch

ma =

100 % 3.000 kg/ha

Betrachtete Entwässerungsabschnittsfläche

Einzugsgebiet, A_{red}

2,7458171 ha

Abflusswirksamer Jahresniederschlag von befestigten Flächen

N =

400 mm

Jahresvolumen (QA_{md})

V =

10.983 m³

Jahressalzmasse

m =

8.237 kg

Mittelwasserführung des Vorfluters : Schmalfelder Au

A_e =

169,09 km²

 $M_{\alpha} =$

11 l/(s•km²)

MQ =

1860,0 l/s

Jahresabflussvolumen

 $V = 58.655.763 \text{ m}^3$

Jahressalzmasse

m =

8.237 kg

Erhöhung der Salzkonzentration im Jahresdurchschnitt =

0,0001 g/l

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

13.1.5 Entwässerungsabschnitt A7 – 03

Die Berechnung des RKB 3/ West erfolgt im Zuge der Entwu fsplanung der A 7. Die nachfolgenden Berechnungen sind dem Vorabzug entnommen.

Analog zum Abschnitt A 20: L 114 - A 7, wurde die Planung der A 7 – Entwässerung mit dem Kreis Segeberg – Wasserbehörde abgestimmt. Die Berechnungen entsprechen den für die A 7 festgelegten Ergebnissen und Berücksichtigen die Besonderheiten der A 7.

13.1 Wassertechnische Berechnungen

	6-streifiger Aus	bau zwischer	A7-A der AS E			It und der AS	Kalten	kirchen		U.13.2.1 Wassertechnik
-										
Abflussermit	tlung gemäß RAS-E	w. 05								
Rifa Flensburg										
Entwässerung	sabschnitt 3 (Bau-km	117+900 b	is 118+6	30)						
Ausgangsparan	<u>neter</u> für Entw. über Böschung	aa Madalaa	n			(1/a)				
	ch Kostra-DWD 2000; Ka				1 alte 35. 2		ensper	nde r15.n:		
Entw. Über Bösc			r _{15.1}		102,8	l/(s+ha)	,			
natürlicher Abflu	NOT STATE OF THE S		r _{nat}		0.6	I/(s+ha)				
Spitzenabflussbe	7.7		Ψs		0,9	(0 //				
	sickerrate Dammböschung	n/Bankett		=	150	I/(s+ha)				
	ickerrate Einschnittsbösc		q _s		100	I/(s+ha)				
Spezifische Vers		3	q _s		0	I/(s+ha)				
				_				E12 - L -	111	
Flächenberechr	nung	Länge *	Breite	= FI	läche	[m²]	=	Fläche	[ha]	
befestige Fläch	en									
Rifa Flensburg	117+900 - 118+630	730 *	14,5	=	10585	m²	=	1,06	ha	
A 20	Verteilerfahrbahn	110 *	6.0	=	660	m²	=	0,07		
A 20	Einfädelungsstreifen	250 *	1,25		312,5	m²	=	0,03		
				Sun	nme bef.	Flächen:		1,16	<u>ha</u>	
Bankette										
Rifa Flensburg	117+900 - 118+630	730 *	1,50		1095	m²	=	0,11		
A 20	Trennstreifen	0.	4,0		0 nme Bar	m² kettflächen	: =	0,00 0,11		
				2-11						
Böschung										
Einschnitt	118+325 - 118+630	730 *	7,00		5110	m²	=	0,51		
Damm	117+900 - 118+325	150 *	3,00		450	m²	=	0,05		
				Sun	nme Bös	chungsfläc	nen:	0,56	na	
Mulde										
Rifa Flensburg	Böschungsfuss	730 *	2,00	=	1460	m²	=	0,15	ha	
3		1818.7	100		nme Mul	denflächen:		0,15	<u>ha</u>	

Abflüsse:							
Straßenabflus	s über Mulden, Böschungen						
bef. Flächen	6 streifige BAB	Q =	1,16 *	0,9 *	102,8	=	106,93 l/s
Bankett	*	Q =	0,11 *	102,8 -	150	=	-5,17 l/s
Dammböschung	9	Q =	0,05 *	102,8 -	150	=	-2,12 l/s
Einschnittsböso	hung	Q =	0.51 *	102,8 -	100	=	1,43 l/s
Mulden		Q =	0.15 *	102,8 -	0	=	15,01 Vs
					Abfluss Q	=	116,08 1/s

Berechnung reduzierte Fläche für Regenrückhaltebecken

Ared. = $Q/r_{15,1}$ 116,08 / 102,8 1,13 ha

Summe der überbauten Fläche

Berechnung der Drosselabflussspende auf Grundlage natürliches Einzugsgebiet:

Σ A_{úberbaut} * Qdr,max = r nat. Qdr,max = 1,97

1,18 I/s Abfluss neu

1,97 ha

aufgestellt:

Ingenieurgesellschaft für Bau- u. Vermessungswesen

Odermann - Krause

Buchholz i. d. Nordheide, den 14.02.2008

i. A. gez. K. Konarske

U.13.2.1 Wassertechnik

A 7 - Abschnitt 4 6-streifiger Ausbau zwischen der AS Bad Bramstedt und der AS Kaltenkirchen

Ermittlung der Speichervolumen (RRB) gem. ATV - DVWK - Regelwerk, Arbeitsblatt 117 (April 2006)

Entwässerungsabschnitt 3 (Bau-km 117+900 bis 118+630)

Rifa Flensburg (mit A 20)

Ausgangsparameter								
vorgegebene Überschreitungshäufigkeit	-	П	Vorgabe Wasserbehörde			11	0,50 1/a	(2 Jahre)
vorgegebener Abfluss für nat. Einzugsgebiet	r nat.	11	Vorgabe Wasserbehörde			11	0,60 l/s*ha	
überbaute Fläche nat. Einzugsgebiet	Σ Aüberbauf	II De				11	1,97 ha	
maximaler Drosselabfluss im Einzugsgebiet	Qdr,max	11 ×	Σ Aüberbaut	×	r nat.	11	1,18 1/s	
reduzierte Fläche gemäß RAS-Ew.05	Ared (Au) =	= (n)				11	1,13 ha	
Drosselabflussspende bezogen auf Au	ddr,u	11	Qdr,max	_	Au	п	1,0 l/s*ha	
Zuschlagsfaktor nach ATV - A 117 Tabelle 2 [-]	fz	11				н	1,0	
Abminderungsfaktor nach ATV - A 117 Bild 3 [-]	Га	ŧı				11	1,0	
spezifisches Speichervolumen:	Vs,u	11	(rD,n - qdr,u) * D * fz * fa * 0,06	* 0,06				[m³/ha]

D, n = Regenspende der Dauerstufe D und der Häufigkeit n [l/s*ha]

D = Dauerstufe [min]

Regenspende nach KOSTRA-Deutscher Wetterdienst

D [min]	rD(n) [l/s*ha]	Vs,u [m³]
720	8,1	304,76
1080	6,5	314,58
1440	4,8	324,40
2880	2,8	303,21
4320	2,1	273,37

Das max. Speichervolumen erhält man bei einer Regendauer erforderliches spezifisches Volumen: erforderliches Speichervolumen:

1440 min 324,40 m³/ha

11 11

366,30 m³

11

An

Vs,u

11

Verf.

O Ns'n

aufgestellt: Ingenieurgesellschaft für Bau- u. Vermessungswesen

Odermann - Krause Buchholz i. d. Nordheide, den 14.02.2008

Buchholz I. d. Nordneide I. A. gez. K. Konarske

Bemessung Regenklärbecken gemäß RAS-Ew. 05

Rifa Flensburg (mit A 20)

Entwässerungsabschnitt 3 (Bau-km 117+900 bis 118+630)

Ausgangsparameter

Au = undurchlässige Fläche in m²

rD(n) = maßgebende Regenspende in I/(sxha) bei n = 15 min

Qf = Ständiger Zufluss in I/s

qA = Geschwindigkeit der Oberflächenbeschickung in (m/h)

Qrkrit = Zufluss in I/s

rkrit = kritische Regenspende = 15 l/(sxha)

Qf, Ständiger Zufluss aus Rückhaltebemessung

Fläche (Ared) Au = 1,13 ha Regenhäufigkeit n = 1 Regenspende rD(n) = 102,8 l/(sxha)

Zufluss Qf = $(Au \times rD(n))/10000$ = 116,08 l/s

Qrkrit, kritischer Zufluss

 Fläche
 (Ared)
 Au = 1,13 ha

 Regenspende
 rkrit = 15 l/(sxha)

Zufluss $Qrkrit = (Au \times rkrit)/10000 = 16,94 \text{ l/s}$

QRKB, Bemessungzufluss Regenklärbecken

Summe Zufluss QRKB = Qf+Qrkrit = 133,01 l/s

Bemessung des erforderlichen Beckenvolumens

erf. Beckenvolumen erf. V =(3,6 x QRKB x hB) / qA

Oberflächenbeschickung gem. RAS-Ew qA = 9 m/h
Beckentiefe hB = 2 m

Das erforderliche Beckenvolumen beträgt gemäß RAS-Ew. 05 = 106,41 m³

aufgestellt:

Ingenieurgesellschaft für Bau- u. Vermessungswesen

Odermann - Krause

Buchholz i. d. Nordheide, den 14.02.2008

i. A. gez. K. Konarske

	6-streifiger Au	sbau zwische		oschnitt 4 ad Bramsted	it und der AS	Kalte	nkirchen		Wassertechni
					-)			
Abflussermit	ttlung gemäß RAS-E	w. 05							
Rifa Hamburg	(mit A 20)								
	gsabschnitt 3 (Bau-kr	n 117+900 I	bis 118+6	30)					
Ausgangspara	meter								
Regenhäufigkeil Niederschlag na	t für Entw. über Böschung sch Kostra-DWD 2000; Ka		n = Rasterfeld:		(1/a) (eile: 18; Reg	enspe	nde r15,n:		
	chungen, Mulden		r _{15,1} =	102,8	I/(s+ha)				
natürlicher Abflu	ISS		r _{nat} =	0,6	I/(s+ha)				
Spitzenabflussb	eiwert Fahrbahn		4's =	0,9					
Spezifische Vers	sickerrate Dammböschun	g/Bankett	$q_s =$	150	I/(s+ha)				
Spezifische Vers	sickerrate Einschnittsböse	chung	$q_s =$	100	I/(s+ha)				
Spezifische Vers	sickerrate Mulde		q, =	0	I/(s+ha)				
Flächenberech	nung	Länge *	Breite =	Fläche	[m²]	=	Fläche	[ha]	
befestige Fläch	nen								
Rifa Hamburg	117+900 - 118+630	730 *	14,5 =	10585	m²	=	1,06	ha	
A 20	Verteilerfahrbahn	250 *	6,0 =		m²	=	0,15		
A 20	Einmünd. Schleife	80 *	4,5 =	360	m²	=	0,04	ha	
A 20	Einfädelungsstreifen	250 *	1,25 =	312,5	m²	=		ha ha	
			<u>s</u>	umme bef.	Flächen:		1,28	<u>ha</u>	
Bankette									
Rifa Hamburg	117+900 - 118+630	730 *	1,50 =		m²	=	30.00	ha	
A 20	Trennstreifen	150 *	4,0 =		m²	=		ha	
			5	umme Bani	kettflächen:		0,17	<u>ha</u>	
Böschung									
inschnitt	118+325 - 118+630	305 *	3.00 =	915	m²	=	0.09) ha	
Damm	117+900 - 118+325	425 *	4,00 =		m²	=	0,17	ha ha	
			<u>s</u>	umme Böse	chungsfläch	en:	0,26	<u>ha</u>	
Mulde									
Rifa Hamburg	Böschungsfuss	730 *	2,00 =		m²	=		ha	
			<u>s</u>	umme Mulc	lenflächen:		0,13	<u>ha</u>	
			Summe de	r überbaute	en Fläche	=	1,85	<u>ha</u>	
Abflüsse:									
	über Mulden, Böschur		4 00 +	00.	102.0	=	118,00	l Ve	
bef. Flächen Bankett	6 streifige BAB	Q = Q =	1,28 * 0,17 *	0,9 * 102,8 -		=	-8,00		
oankell Dammböschung	i	Q =	0,17	102,8 -		=	-8,0		
inschnittsbösch		Q =	0.09 *	102,8 -	100	=	0,26		
Mulden		Q =	0,15 *			=	15,0		
					Abfluss Q	=	117,2	7 <u>l/s</u>	
Berechnung re	duzlerte Fläche für Reg	enrückhalte	becken						
		Ared. =	Q/r _{15.1} =	117,27 /	102,8	=	1,14	<u>ha</u>	
		A0000100755	9500101 000	0.000000000000000000000000000000000000	0000000		20000		
Berechnung de	er Drosselabflussspend	e auf Grund	lage natürl	iches Einzu	gsgebiet:				
	Qdr,max		Aüberbaut *	r _{n0.1}					
	Qdr,max		1,85 *	0,6		=	1,1	1 <u>I/s</u>	Abfluss neu
	<u> </u>	_					-		

A 7 - Abschnitt 4

aufgestellt:

Ingenieurgesellschaft für Bau- u. Vermessungswesen Odermann - Krause Buchholz i. d. Nordheide, den 14.02.2008

i. A. gez. K. Konarske

U.13.2.1

U.13.2.1 Wassertechnik

A 7 - Abschnitt 4 6-streifiger Ausbau zwischen der AS Bad Bramstedt und der AS Kaltenkirchen

chen	
kirch	
ten	
Ka	
. AS	
qeı	
pun	
edt	
mst	
Bra	
Bad	
AS	
der	
en	
isch	
ž	
spar	
Aus	
iger	
treif	
e-9	

Ermittlung der Speichervolumen (RRB) gem. ATV - DVWK - Regelwerk, Arbeitsblatt 117 (April 2006)

Rifa Hamburg (mit A 20) Entwässerungsabschnitt 3 (Bau-km 117+900 bis 118+630)	+630)										
Ausgangsparameter					:						
vorgegebene Überschreitungshäufigkeit,	r r	tt II	Vorga	Vorgabe Wasserbehörde Vorgabe Wasserbehörde	erbehörd	Φ 4		11 11	0,50 1/a 0,60 1/s*ha	(2 Janre)	
überbaute Fläche nat. Einzugsgebiet	Σ Airbertard =	11	2	2)		п	1,85 ha		
maximaler Drosselabfluss im Einzugsgebiet	Qdr,max	11		2 Auberbaut	- 5	×	r nat.	и	1,11 1/s		
reduzierte Fläche gemäß RAS-Ew.05	Ared (Au) =	=(11	1,14 ha		
Drosselabflussspende bezogen auf Au	ddr,u	11		Qdr,max	×	-	An	u	1,0 l/s*ha		
Zuschlagsfaktor nach ATV - A 117 Tabelle 2 [-]	17	11						II	1,0		
Abminderungsfaktor nach ATV - A 117 Bild 3 [-]	fa	11						п	0,1		
spezifisches Speichervolumen:	Vs,u	u	(rD,n	(rD,n - qdr,u) * D * fz * fa * 0,06	D * fz * 1	fa * 0,06				[m³/ha]	
Regenspende nach KOSTRA-Deutscher Wetterdienst											
rD,n = Regenspende der Dauerstufe D und der Häufigkeit n [l/s*ha]	keit n [I/s*	ha]									
Dauersiare [min]											C
D [min] Γ											,n.
											7
4,8											
2880 2,8 315,45											
4320 2,1 291,74											
Das max.Speichervolumen erhält man bei einer Regendauer	۵							II	1440 min		
erforderliches spezifisches Volumen:	n's/							ıt	330,53 m ² /na		
erforderliches Speichervolumen:	V erf.	II	Vs,u	•	Au			11	377,06 m³		
aufgestellt: Ingenieurgesellschaft für Bau- u. Vermessungswesen	wesen										
Odermann - Krause Buchholz i, d. Nordheide, den 14,02,2008											
i. A. "gez. K. Konarske											

Bemessung Regenklärbecken gemäß RAS-Ew. 05

6

Rifa Hamburg (mit A 20)

Entwässerungsabschnitt 3 (Bau-km 117+900 bis 118+630)

Ausgangsparameter

Au = undurchlässige Fläche in m²

rD(n) = maßgebende Regenspende in I/(sxha) bei n = 15 min

Qf = Ständiger Zufluss in I/s

qA = Geschwindigkeit der Oberflächenbeschickung in (m/h)

Qrkrit = Zufluss in I/s

rkrit = kritische Regenspende = 15 l/(sxha)

Qf, Ständiger Zuflus	s aus Rückhaltebe	emessung				
Fläche	(Ared)			Au	=	1,14 ha
Regenhäufigkeit				n	=	1
Regenspende				rD(n)	=	102,8 I/(sxha)
Zufluss		Qf	= (Au x rD(n)) /10000		=	117,27 l/s
Qrkrit, kritischer Zuf	luss					
Fläche	(Ared)			Au	=	1,14 ha
Regenspende	* *************************************			rkrit	=	15 l/(sxha)

Zufluss $Qrkrit = (Au \times rkrit) / 10000 = 17,11 \text{ l/s}$

QRKB, Bemessungzufluss Regenklärbecken
Summe Zufluss QRKB = Qf+Qrkrit = 134,38 l/s

Bemessung des erforderlichen Beckenvolumens

erf. Beckenvolumen erf. V =(3,6 x QRKB x hB) / qA

Oberflächenbeschickung gem. RAS-Ew qA = 9 m/h Beckentiefe hB = 2 m

Das erforderliche Beckenvolumen beträgt gemäß RAS-Ew. 05 = 107,51 m³

aufgestellt:

Ingenieurgesellschaft für Bau- u. Vermessungswesen

Odermann - Krause

Buchholz i. d. Nordheide, den 14.02.2008

i. A. gez. K. Konarske

RKB 3/ West

Streusalzeintrag in die oberirdischen Gewässer

Berechnung einer einzelnen Einleitsituation

spezifischer Streusalzeintrag pro Streugang

$$G = 20 \text{ g/m}^2 = 200 \text{ kg/ha}$$

Betrachtete Entwässerungsabschnittsfläche

Einzugsgebiet, $A_{red} = 1,13$ ha

 $r_{15(1)} = 102,8 \text{ l/(s} \cdot \text{ha)}$

 $Q_{zu} = 116,2 \text{ l/s}$

Direkteintrag 100 %

Regenvolumen 105 m³ Salzmasse 226 kg

Konzentration im Zulauf 2,16 g/l

Wasservolumen Rückhaltebecken

Volumen $V = 1,7 \cdot A_{rrb}$ 1.500 m³

Abminderung durch Verdünnung im RRB

abmittel = 30%

Salzkonzentration im Ablauf RRE 0,65 g/l

Abflussverhältnis

 $Q_{zu}/Q_{ab} = 0,0102$

Ablaufmenge des RRB

 $Q_{ab} = 1,18 \text{ l/s}$

Entleerungszeit = 88.600 s

24,6 h

Einleitung in den Vorfluter :

Gewässer N

Mittelwasserführung des Vorfluters

 $A_e = 2,24 \text{ km}^2$

 $M_0 = 11 I/(s \cdot km^2)$

MQ = 24,64 l/s

maximale Erhöhung der Salzkonzentration im Vorfluter = 0,030 g/l

Teil B Autobahnkreuz A20 / A7

13.1 Wassertechnische Berechnungen

RKB 3/ West

Berechnung der jährlichen Belastung

spezifischer Streusalzeintrag pro Streugang

 $G = 20 \text{ g/m}^2$

200 kg/ha

Anzahl der Streugänge / Jahr

= 15

Anteil des Direkteintrags

d = 100 %

Jahreshektarverbrauch

 $m_a = 3.000 \text{ kg/ha}$

Betrachtete Entwässerungsabschnittsfläche

Einzugsgebiet, Ared

1,13 ha

Abflusswirksamer Jahresniederschlag von befestigten Flächen

N = 400 mm

Jahresvolumen (QA_{red})

 $V = 4.520 \text{ m}^3$

Jahressalzmasse

m = 3.390 kg

Mittelwasserführung des Vorfluters :

Gewässer N

 $A_0 = 2,25 \text{ km}^2$

 $M_a = 11 I/(s \cdot km^2)$

MQ = 24.8 l/s

Jahresabflussvolumen

 $V = 780.967 \text{ m}^3$

Jahressalzmasse

m = 3.390 kg

Erhöhung der Salzkonzentration im Jahresdurchschnitt =

0,0043 g/l