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1 Introduction

This document presents the scientific background for the new MIKE 21 & MIKE 3 Flow
Model FM' modelling system developed by DHI Water & Environment. The objective is to
provide the user with a detailed description of the flow and transport model equations,
numerical discretization and solution methods. Also model validation is discussed in this
document.

The MIKE 21 & MIKE 3 Flow Model FM is based on a flexible mesh approach and it has
been developed for applications within oceanographic, coastal and estuarine
environments. The modelling system may also be applied for studies of overland flooding.

The system is based on the numerical solution of the two/three-dimensional
incompressible Reynolds averaged Navier-Stokes equations invoking the assumptions of
Boussinesq and of hydrostatic pressure. Thus, the model consists of continuity,
momentum, temperature, salinity and density equations and it is closed by a turbulent
closure scheme. For the 3D model the free surface is taken into account using a sigma
coordinate transformation approach.

The spatial discretization of the primitive equations is performed using a cell-centred finite
volume method. The spatial domain is discretized by subdivision of the continuum into
non-overlapping elements/cells. In the horizontal plane an unstructured grid is used while
in the vertical domain in the 3D model a structured mesh is used. In the 2D model the
elements can be triangles or quadrilateral elements. In the 3D model the elements can be
prisms or bricks whose horizontal faces are triangles and quadrilateral elements,
respectively.

1

Including the MIKE 21 Flow Model FM (two-dimensional flow) and MIKE 3 Flow Model FM (three-

dimensional flow)
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Shallow water equations

The model is based on the solution of the three-dimensional incompressible Reynolds
averaged Navier-Stokes equations, subject to the assumptions of Boussinesq and of
hydrostatic pressure.

The local continuity equation is written as

ou ov ow
—+—+—=95 2.1
ox Oy Oz

and the two horizontal momentum equations for the x- and y-component, respectively

@ ou’ 8vu owu = fr—p __L % B
ot ax Gy 0z ox p, Ox
(2.2)
Os.
J ”ap Oy <+ Sy +F”+i(v, a_“jJru\.S
8x oy oz\ Oz ‘
) )2 ) avi
?l+a‘ +6u\ +am :_fu_ga_n_L%_
a oy o o » p oy
9 os,. O o( ov -
s Os
J.” ID oy W +Ev+—(v’—j+v?S
h ox Oy Oz\ 'Oz ‘

where t is the time; x, y and z are the Cartesian coordinates; 7 is the surface elevation;
d is the still water depth; /2 =7 +d is the total water depth; u, v and w are the velocity
components in the x, y and z direction; f = 2Qsin ¢ is the Coriolis parameter (€2 is the
angular rate of revolution and ¢ the geographic latitude); g is the gravitational

acceleration; p is the density of water; s, s .5, and s, are components of the

xx? My
radiation stress tensor; v, is the vertical turbulent (or eddy) viscosity; p,, is the
atmospheric pressure; p, is the reference density of water. S is the magnitude of the

discharge due to point sources and (us,vs) is the velocity by which the water is

discharged into the ambient water. The horizontal stress terms are described using a
gradient-stress relation, which is simplified to

FE = 6(2A6uj g Y| %+@ (2.4)
ox ox) Oy oy Ox

ENVIRONMENT! 3
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E :E(A[@+@J]+—a—(2fl@j (2.5)
ox oy Ox oy oy

where A is the horizontal eddy viscosity.

The surface and bottom boundary condition for v, vand w are

At z=n:
(2.6)

a—77+ua—77+v,a—77—w=0, (au 6\1) L(1'“,1'3),)

ot ox oy 0z 0z) pyv, = "
At z=-d:

od ~ od ou ov) 1 (&)
u—+v—+w=0, |—,— :—(Tb_\.,rb),)

ox oy 0z 0z) pyv, :

where ( TarTap ) and (rb\ ,rby) are the x and y components of the surface wind and
bottom stresses.

The total water depth, h, can be obtained from the kinematic boundary condition at the
surface, once the velocity field is known from the momentum and continuity equations.
However, a more robust equation is obtained by vertical integration of the local continuity
equation

Oh, o O _ s+ p-F 2.:8)
o 0Ox oy

where P and E are precipitation and evaporation rates, respectively, and # and v are
the depth-averaged velocities

hu = J_”ludz, hv = I_"ivdz (2.9)

The fluid is assumed to be incompressible. Hence, the density, p, does not depend on
the pressure, but only on the temperature, T, and the salinity, s, via the equation of state

p=pT,s) (2.10)

Here the UNESCO equation of state is used (see UNESCO, 1981).

4 Hydrodynamic and Transport Module - © DHI
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2.1.2 Transport equations for salt and temperature

The transports of temperature, T, and salinity, s, follow the general transport-diffusion
equations as

§Z+6“T+GVT+6‘"T=FT+£(D‘,5—T—J H+T,S @11)
o Ox oy Oz 0z Oz
§+%+@+6ws=FS+E(D‘,@)+ssS (2.12)
o ox oy Oz 0z oz

where D, is the vertical turbulent (eddy) diffusion coefficient. H s a source term due to

heat exchange with the atmosphere. T, and s, are the temperature and the salinity of
the source. F are the horizontal diffusion terms defined by

(Fr.F,)= {E(Dh 3] +E(Dh %H(TJ) (2.13)

ox ox) Oy

where D, is the horizontal diffusion coefficient. The diffusion coefficients can be related
to the eddy viscosity

v
D, ~4 ana D, =2 2.14)
Or Oy

where 0 is the Prandtl number. In many applications a constant Prandtl number can be
used (see Rodi (1984)).

The surface and bottom boundary conditions for the temperature are

At z=n:
. . (2.15)
ha—T: O +T,P-T,E
0z poc,
At z=-d:
(2.16)
ar _,
oz

where (), is the surface net heat flux and ¢, = 4217 J [(kg - °K) is the specific heat of

the water. A detailed description for determination of H and 0, is given in Section 2.10.

The expert in WATER ENVIRONMENT
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The surface and bottom boundary conditions for the salinity are
At z=n$:
2A7)
a (
% _p
0z
At z=-d:
2.18)
a (
% _y
Oz

When heat exchange from the atmosphere is included, the evaporation is defined as

E=13pl, (2.19)

where g, is the latent heat flux and /, = 2.5-10° is the latent heat of vaporisation of
water.

2.1.3 Transport equation for a scalar quantity

The conservation equation for a scalar quantity is given by

o Ox oy 0z 0z 0z " ‘

where C is the concentration of the scalar quantity, kp is the linear decay rate of the

scalar quantity, C is the concentration of the scalar quantity at the source and D,, is the
vertical diffusion coefficient. F is the horizontal diffusion term defined by

Fe = i(D,7£J+i Dhg C (2.21)
ox ox) 0oy oy

where D, is the horizontal diffusion coefficient.

2.1.4  Turbulence model

The turbulence is modelled using an eddy viscosity concept. The eddy viscosity is often
described separately for the vertical and the horizontal transport. Here several turbulence
models can be applied: a constant viscosity, a vertically parabolic viscosity and a
standard k-¢ model (Rodi, 1984). In many numerical simulations the small-scale
turbulence cannot be resolved with the chosen spatial resolution. This kind of turbulence
can be approximated using sub-grid scale models.

6 Hydrodynamic and Transport Module - © DHI
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Vertical eddy viscosity

The eddy viscosity derived from the log-law is calculated by

2
v, =U_h| ¢ atd +c2(z+d (2.22)
h h

where U, :maX(UTS,UTb) and ¢, and c, are two constants. U and U, are the
friction velocities associated with the surface and bottom stresses, ¢; =0.41 and

¢, =—0.41 give the standard parabolic profile.

In applications with stratification the effects of buoyancy can be included explicitly. This is
done through the introduction of a Richardson number dependent damping of the eddy
viscosity coefficient, when a stable stratification occurs. The damping is a generalisation
of the Munk-Anderson formulation (Munk and Anderson, 1948)

v, =v, (1+aRi)™ (2.23)

where v,* is the undamped eddy viscosity and Ri is the local gradient Richardson number

2 g\
Ri:—ié’l3 (@j +(@J (2.24)
P, 0z |\ Oz 0z

a =10 and b=0.5 are empirical constants.

In the k-e model the eddy-viscosity is derived from turbulence parameters k and ¢ as
V. =c — (2.25)

where k is the turbulent kinetic energy per unit mass (TKE), ¢ is the dissipation of TKE
and ¢, is an empirical constant.

The turbulent kinetic energy, k, and the dissipation of TKE, &, are obtained from the
following transport equations

ok oOuk oOvk oOwk o v, ok
—+ + + =F +—|——+P+B—¢ (2.26)
ot ox Oy Oz 0z\ o, Oz
0g Oue Ove Owe
—+ + + =
o ox 0oy 0z
5 5 (2.27)
v, 0g)| €
F, + EE[G—LEJ + %(clgP +¢3,B—c,,8)

where the shear production, P, and the buoyancy production, B, are given as

he expert in WATER ENVIRONMENT? 7
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(2.28)

(2.29)

g,

with the Brunt-Vaisala frequency, N, defined by

0
N2—_E& 9P (2.30)
Po Oz

o, is the turbulent Prandtl numberand o, o, ¢, ¢,
constants. F are the horizontal diffusion terms defined by

0 0 0 0
(Fk’FE)_I:a(Dh —6;]+a_y(l)’7 5):](](,8) (2.31)

. and c;, are empirical

The horizontal diffusion coefficients are given by D, = A/ o, and D, = A/ o,
respectively.

Several carefully calibrated empirical coefficients enter the k-e turbulence model. The
empirical constants are listed in (2.47) (see Rodi, 1984).

Table 2.1 Empirical constants in the k-¢ model.

C,u Cle Coe C3e¢ o, O O,
0.09 1.44 1.92 0 0.9 1.0 1.3

At the surface the boundary conditions for the turbulent kinetic energy and its rate of
dissipation depend on the wind shear, U s

At z=1

\/g ” (2.32)

£=—" for U, >0

for U, =0 259

ok _, _@ﬁ;ﬁz
Ok _ R

8 Hydrodynamic and Transport Module - © DHI
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where x =0.4 is the von Karman constant, a = 0.07 is and empirical constant and Az,

is the distance from the surface where the boundary condition is imposed. At the seabed
the boundary conditions are

At z=-d:

13 (2.34)
k= LUf,, g=—2

c KAz,

V%

where Az, is the distance from the bottom where the boundary condition is imposed.

Horizontal eddy viscosity

In many applications a constant eddy viscosity can be used for the horizontal eddy
viscosity. Alternatively, Smagorinsky (1963) proposed to express sub-grid scale
transports by an effective eddy viscosity related to a characteristic length scale. The
subgrid scale eddy viscosity is given by

A=c2? 25,8, (2.35)

where cs is a constant, / is a characteristic length and the deformation rate is given by

1( ou, Ou;
S. = +—L| @G,j=1.2 2.36
/ 2[8x 8x»] (-] ) .

1

2.1.5 Governing equations in Cartesian and sigma coordinates

The equations are solved using a vertical o-transformation

, ¥=% jJ=y (2.37)

where o varies between 0 at the bottom and 1 at the surface. The coordinate
transformation implies relations such as

o 1 8

il (2.38)
oz h 60‘
0 0 0 1( od ah) 0 o0 1 od oh) 0
—i— |=| =—=|=*+0 —k g = (2.39)
ox Oy ox' h\  oOx ox)oc oy h\ oy oy )0o

In this new coordinate system the governing equations are given as

oh Ohu oOhv oOhw

— + =hS (2.40)

+
o ox' oy Oo

The expert in WATER ENVIRONMENT:! 9
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2
Ohu N Ohu N Ohvu N Chau — foh—gh on _h dp,
o  ox' oy’ oo ox'  p, Ox'
(2.41)
0s,
hgri@pd s aS—+i +I1F“+ﬁ(Lﬂ +huS
ox 0Oy oo\ h oo
) ) )2 )
8]1+ Ohuy . ohy +6ha)\ :_ﬁ(h_gha_n_ia_p&_
oo o' o oo o' p, O
hg (10 1 (0s, 0Os o (v, 0 3
1_gJ~'z_de__ =+ 2 | +hF, +—(ﬁlj+hv\§
pliay " e oy oo\ hoc)
ohT OhuT OhvT OhwT
+ - + =
ot ox' oy’ oo
5 D or (2.43)
hF, + — [ j +hH +hT,S
oo c
o oh oh oh 6 D 6
Yy MIS + VIS + I =hF, + il +hs S (2.44)
o ox oy oo oo o0
ohk Ok Ohuk N ohvk alm)k
ot ox' 8y’ oo
1 0(v ok )
hF, + —| —+— |+h(P+B-¢)
h oo O'A oo
Ohe Ohue Ohve Ohwe
— - + - =
ot ox' o' oo
1 5 a (2.46)
hE_ + £ l+h £(clEP +¢;,B-c,.£)
hdo o, . 0o k
ohC % 6hu,C N ahv’c+ ohaC _ hF.+-2- o (D, oC —hk,C+hC,S (2.47)
ot ox oy oo oo o

The modified vertical velocity is defined by

1 od od oh Oh Oh
O=—|w+u—+v——-0| —+u—H+=v (2.48)
h ox' o o ox' o

The modified vertical velocity is the velocity across a level of constant
o. The horizontal diffusion terms are defined as

hF, = a(?.lAauj & hA| — i av (2.49)
Ox ox ay oy ax

10 Hydrodynamic and Transport Module - © DHI
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hF, zi hA a—u+@ +2 2hA@ (2.50)
Ox oy Ox oy oy

h(FTaF_‘V’}?]\»aF‘EaF;)z
3(17D,,3j+3 w0, 2\ |75, k,£,0) S
ox ox) Oy oy

The boundary condition at the free surface and at the bottom are given as follows

At o =1:
(2.52)
00, (ﬁﬂ_j:L(,w,w)
0o 0o ) py, — °
At o =0:
ov (2.53)
=0 (a—u’_j:L(Tb\"Tbv)
0o 0o ) py,

The equation for determination of the water depth is not changed by the coordinate
transformation. Hence, it is identical to Eq. (2.6).

2.2 3D Governing Equations in Spherical and Sigma Coordinates

In spherical coordinates the independent variables are the longitude, A , and the latitude,
¢ . The horizontal velocity field (u,v) is defined by

qucosgbﬂ v:Rﬁ (2.54)
dt dt

where R is the radius of the earth.

In this coordinate system the governing equations are given as (all superscripts indicating
the horizontal coordinate in the new coordinate system are dropped in the following for
notational convenience)

oh, 1 [ahu .\ ahvcos¢j+ Oha _ o (2.55)

a  Rcosg\ 04 o oo

The expert in WATER ENVIRONMENT? 11
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) 2 )
Chu 1 [8/121 +6h\ucos¢\] Ohau [f+ tan¢)vh

—+
ot Rcos¢g o¢ oo
L [ gp0n, 10, & "apd oo B 4 cosgBo |4 (2.56)
Rcosg\~ 04 p, 04  p,7: O o4 6(,75
hE, +i(v Ou j+/ usS
oo\ h oo
2 2 )
ohv N 1 Ohuv N ohv* cos ¢ 611(01 (f+—tan¢)uh
ot Rcosg o¢ oo R
a 2
1 pdn, 1%, 8 ”apd P R . s | (2.57)
R op p, Op p,°: 0¢ po\cosg O4  Of

hF, +i(iﬂj+hvsS
oo\ h oo

ot Rcos¢g o¢ oo

: (D aT}L/H+I1TS
oo\ h 0

ohT 1 (GlmT athcosgﬁj ohwT

(2.58)
hE, +

ohs 1 Ohus Ohvscos¢ | Ohws
il + + =
Ot Rcos¢ o¢ oo

hF, +i(2 o ]+hsvS
oo\ h oo ‘

(2.59)

ohk N 1 ohuk N Ohvkcos ¢ N Oohwk
ot Rcosg o¢ oo

(2.60)
L B [" ak)+h(P+B £)

hE, +

h oo o, OO

ohs 1 Ohue Ohvecos¢g | Ohwe
ot Rcosg¢g o¢ oo
1 0

(2.61)
hF, + [ Y, g8 j +h ;(c]gP ¢, B—cy,6)

hao' o, 00

6hC 1 BhuC OhvC cos ¢ aha)C _
ot R cos¢ o¢ oo

9 [D 6Cj hk,C +hC.S
oo

(2.62)
hE. +—
¢ h do

The modified vertical velocity in spherical coordinates is defined by

Hydrodynamic and Transport Module - © DHI
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u od vod oh u Oh v Ooh
w=—|w+ —+———0| —+ —+——
h Rcos¢ OA R Oy Ot  Rcos¢g &4 R O¢ (2.63)
The equation determining the water depth in spherical coordinates is given as
(2.64)

@4_ 1 ohu +8l7vcos¢ e
Ot Rcos¢g| 04 o¢

2D Governing Equations in Cartesian Coordinates

23
2.3.1 Shallow water equations
Integration of the horizontal momentum equations and the continuity equation over depth
h =n + d the following two-dimensional shallow water equations are obtained
oh Ohu Ohv
—+—+ =hS (2.65)
o oOx Oy
= =5 prae
ohu N ohu N ohvu =f\7/1—g/1a—77—]—7%—
ot ox oy ox p, Ox
ﬂ?BJrh_i_L(%JF_»] (2.66)
20, 0% Py Py Po\ X Oy
9 (hT,)+ 9 (hT\y) + hu S
e W ay »
i — —2
all_l_ahuv +6hv :_ﬁh_gha_n_li%_
a o oy &y po oy
i’za_/’ﬂi_h_L(%jLﬂ} (2.67)
2000 Py Py P\ Ox Oy

0 (hT_\_y) + %(hT)D,) +hv,S

ox
The overbar indicates a depth average value. For example, # and v are the depth-

averaged velocities defined by
(2.68)

hig = Ij{udz, "y = _[_Zvdz

The lateral stresses 7', include viscous friction, turbulent friction and differential

ij
advection. They are estimated using an eddy viscosity formulation based on of the depth

average velocity gradients

INMENT!
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T\,Y=2A@, TU,:A %+Q‘i, T =2A@ (2.69)
T Y oy o

2.3.2 Transport equations for salt and temperature

Integrating the transport equations for salt and temperature over depth the following two-
dimensional transport equations are obtained

ohT ohul ohwT
+ +

= hF, + hH + hT.S (2.70)
ot ox

ohs Ohus Ohvs
+ I
ot ox

=hF, +hs S 2.71)

where 7 and 5 is the depth average temperature and salinity.

2.3.3 Transport equations for a scalar quantity

Integrating the transport equations for a scalar quantity over depth the following two-
dimensional transport equations are obtained

ohC ohuC ohvC
+ +
ot Ox Oy

=hF. —hk,C +hC,S (2.72)

where C is the depth average scalar quantity.

2.4 2D Governing Equations in Spherical Coordinates

In spherical coordinates the independent variables are the longitude, A ,and the latitude, ¢
. The horizontal velocity field (u,v) is defined by

U =Rcosg— vV=R— (2.73)

where R is the radius of the earth.

In spherical coordinates the governing equation can be written

oh 1 (6hu N ohv cos ¢] _0 2.7

—+
Ot Rcos¢g\ 04 op
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ohu u®  ohvu u
ohu 1 [agj{ + 7‘llcos¢j=(f+%tan¢jﬁh

ot  Rcos¢ o¢
1 on _hop, gh'op 1 (os, 0s,,
_ l _ Fa XX e 275
Rcos¢[g oA p, 04 +2p0 6/1+p0[6/1 +eos o¢ ! -
Tor T’” (l J+=— (hT ) +hu S
Po Ox
ohv 1 ohwv  O0hv’ cos @
— I
o +Rcos¢( ) + 2 ] (f+ tan¢)u1
gyl _h o, g0p N[ 1y By, (2.76)
R\" 0¢ p, 09 2p,0p p,\cos¢ 04  0Of
TS)' T ) a a
p—-o - ,DLO + ™ (hT_\_J,) + 5 (/7]"”,) +hv S
T aT oWT .
oh N 1 ohu N ohvT cos ¢ _ hF, +hH + TS 2.77)
ot  Rcos¢ o¢ ‘
= 1 — l ——
ohs N ohiis N Ohvs cos ¢ —hF. +hs.S (2.78)
ot Rcos¢ o¢ ‘
hC ohuC  ohvC =
oh N 1 uC ohvC cos ¢ — hE. —hk C +hC.S 2.79)
ot  Rcos¢ o¢ g ‘

2.5 Bottom Stress

The bottom stress, 7, = (z,,,7,,), is determined by a quadratic friction law

—

T—bchﬁb\ﬁb| (2.80)
0

where ¢, is the drag coefficient and u, =(u,,v,) is the flow velocity above the bottom.
The friction velocity associated with the bottom stress is given by

U,, =wlcf|ub|2 (2.81)

For two-dimensional calculations #, is the depth-average velocity and the drag coefficient

can be determined from the Chezy number, C, or the Manning number, M

¢ ==5 (2.82)

The expert in WATER ENVIRONMENTS 15



MlKE " MIKE 21 & MIKE 3 Flow Model FM

(2.83)

For three-dimensional calculations #, is the velocity at a distance Az, above the sea

bed and the drag coefficient is determined by assuming a logarithmic profile between the
seabed and a point Az, above the seabed

1

2
k |z

where x =0.4 is the von Karman constant and z, is the bed roughness length scale.

Cf:

When the boundary surface is rough, z,, depends on the roughness height, k,
z, = mk, (2.85)

where m is approximately 1/30.

Note, that the Manning nhumber can be estimated from the bed roughness length using
the following

254

=7/ 2.86
ks”6 (2.86)

The wave induced bed resistance can be determined from

2
u .
Cp= Je (2.87)
: 5,

where Uy, is the friction velocity calculated by considering the conditions in the wave
boundary layer. For a detailed description of the wave induced bed resistance, see
Fredsge (1984) and Jones et.al. (2014).

2.6 Wind Stress

In areas not covered by ice the surface stress, 7, =(z,,,7,,), is determined by the winds

sx 2

above the surface. The stress is given by the following empirical relation

z_-x = pucdluw ﬁw (2.88)

where p, is the density of air, ¢, is the drag coefficient of air, and #,, = (u,,,v,,) is the

wind speed 10 m above the sea surface. The friction velocity associated with the surface
stress is given by

W
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(2.89)

The drag coefficient can either be a constant value or depend on the wind speed. The
empirical formula proposed by Wu (1980, 1994) is used for the parameterisation of the
drag coefficient.

c, Wi <W,
= € ~Ca ( ) ) ) ) <
Cp =€, +—————W,—=w,) W, Sw,<w, (2.90)
w, —w,
Cy Wio 2 W,

where c¢,, ¢, W, and w, are empirical factors and wy, is the wind velocity 10 m above the
sea surface. The default values for the empirical factors are ¢, = 1.255-10'3, Cp=2.425-10
® w,=7 m/s and w, = 25 m/s. These give generally good results for open sea
applications. Field measurements of the drag coefficient collected over lakes indicate that
the drag coefficient is larger than open ocean data. For a detailed description of the drag
coefficient see Geernaert and Plant (1990).

2.7 Ice Coverage
It is possible to take into account the effects of ice coverage on the flow field.

In areas where the sea is covered by ice the wind stress is excluded. Instead, the surface
stress is caused by the ice roughness. The surface stress, 7, = (7 rsy), is determined

sx
by a quadratic friction law

—

T

S

Po

=c i Jii,| (2.91)

where c, is the drag coefficient and u, = (u,,v,) is the flow velocity below the surface.
The friction velocity associated with the surface stress is given by

U,, :1,Cf|us‘2 (2.92)

For two-dimensional calculations i is the depth-average velocity and the drag coefficient
can be determined from the Manning number, M

_ g
Cr = (MhT)z (2.93)

The Manning number is estimated from the bed roughness length using the following
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254

= (2.94)
ks1/6

For three-dimensional calculations i is the velocity at a distance Az, below the surface

and the drag coefficient is determined by assuming a logarithmic profile between the
surface and a point Az, below the surface

1

2
2.95
Kk \ z

where x =0.4 is the von Karman constant and z, is the bed roughness length scale.

When the boundary surface is rough, z,, depends on the roughness height, k,
zy = mk, (2.96)

where m is approximately 1/30.

Tidal Potential

The tidal potential is a force, generated by the variations in gravity due to the relative
motion of the earth, the moon and the sun that act throughout the computational domain.
The forcing is expanded in frequency space and the potential considered as the sum of a
number of terms each representing different tidal constituents. The forcing is implemented
as a so-called equilibrium tide, which can be seen as the elevation that theoretically would
occur, provided the earth was covered with water. The forcing enters the momentum
equations (e.g. (2.66) or (2.75)) as an additional term representing the gradient of the
equilibrium tidal elevations, such that the elevation ; can be seen as the sum of the actual
elevation and the equilibrium tidal potential.

1 =MNucrvar Ty (2.97)

The equilibrium tidal potential 77 is given as
t
n, = ZeiH,f,.L,. COS(27Z'F +b, +i,x) (2.98)

where 77 is the equilibrium tidal potential, i refers to constituent number (note that the
constituents here are numbered sequentially), e; is a correction for earth tides based on
Love numbers, H;is the amplitude, f; is a nodal factor, L;is given below, t is time, T;is the
period of the constituent, b; is the phase and x is the longitude of the actual position.

The phase b is based on the motion of the moon and the sun relative to the earth and can
be given by

b, =i, —iy)s+ (@, +i)h+i,p+i,N+i;p +u,sin(N) (2.99)
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where iy is the species, i; to is are Doodson numbers, u is a nodal modulation factor (see
Table 2.3) and the astronomical arguments s, h, p, N and ps are given in Table 2.2.

Table 2.2 Astronomical arguments (Pugh, 1987)

Mean longitude of the moon s 277.02+481267.89T+0.0011T>
Mean longitude of the sun h 280.19+36000.77T+0.0003T>
Longitude of lunar perigee p 334.39+4069.04T-0.0103T?
Longitude of lunar ascending node N 259.16-1934.14T+0.0021T>
Longitude of perihelion Ps 281.22+1.72T+0.0005T?

In Table 2.2 the time, T, is in Julian century from January 1 1900 UTC, thus T = (365(y —
1900) + (d — 1) + /)/36525 and i = int (y-1901)/4), y is year and d is day number

L depends on species number i, and latitude y as

io=0 L =3sin’(y)-1
io=1 L =sin(2y)
lo=2 L =cos*(y)

The nodal factor f; represents modulations to the harmonic analysis and can for some
constituents be given as shown in Table 2.3.

Table 2.3 Nodal modulation terms (Pugh, 1987)

f; Ui
M 1.000 - 0.130 cos(N) 0
Mg 1.043 + 0.414 cos(N) -23.7 sin(N)
Q4,04 1.009 + 0.187 cos(N) 10.8 sin(N)
K4 1.006 + 0.115 cos(N) -8.9 sin(N)
2Ny, U2, va, Np, My 1.000 - 0.037 cos(N) -2.1 sin(N)
K, 1.024 + 0.286 cos(N) -17.7 sin(N)

2.9 Wave Radiation

The second order stresses due to breaking of short period waves can be included in the
simulation. The radiation stresses act as driving forces for the mean flow and can be used
to calculate wave induced flow. For 3D simulations a simple approach is used. Here a
uniform variation is used for the vertical variation in radiation stress.
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2.10 Heat Exchange

The heat exchange with the atmosphere is calculated on basis of the four physical
processes

Latent heat flux (or the heat loss due to vaporisation)
Sensible heat flux (or the heat flux due to convection)
Net short wave radiation
Net long wave radiation

Latent and sensible heat fluxes and long-wave radiation are assumed to occur at the
surface. The absorption profile for the short-wave flux is approximated using Beer'’s law.
The attenuation of the light intensity is described through the modified Beer's law as

I(d)=(1-p)e™ (2.100)

where /(d) is the intensity at depth d below the surface; /, is the intensity just below the
water surface; [ is a quantity that takes into account that a fraction of light energy (the

infrared) is absorbed near the surface; A is the light extinction coefficient. Typical values
for # and A are 0.2-0.6 and 0.5-1.4 m™, respectively. B and A are user-specified

constants. The default values are = 0.3 and A =1.0 m™". The fraction of the light
energy that is absorbed near the surface is S/, . The net short-wave radiation, g, ,,, is

attenuated as described by the modified Beer's law. Hence the surface net heat flux is
given by

an q, +q.+ ﬂqsr,ne! + Qb',nel (2.101)

For three-dimensional calculations the source term H is given by

—-A(n-z)
e
—-A(np-z . 1_ — ——
7 0 [ Guae(l= Pl :q“’"”( P 2102
0z pOCp :DOCp

For two-dimensional calculations the source term H is given by

= q, + q. + qsr,ner L qlr,nef
H= (2.103)

pOCp

The calculation of the latent heat flux, sensible heat flux, net short wave radiation, and net
long wave radiation as described in the following sections.

In areas covered by ice the heat exchange is excluded.

2.10.1 Vaporisation

Dalton’s law yields the following relationship for the vaporative heat loss (or latent flux),
see Sahlberg, 1984
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q, = LCe (al £ bIWZm )(Qwaler - Qair ) (2.104)

where L =2.5-10° J/ kg is the latent heat vaporisation (in the literature
L=25-10°-2300T

water

is commonly used); C, =1.32- 107 is the moisture transfer

coefficient (or Dalton number); 17,,, is the wind speed 2 m above the sea surface; O, ..

is the water vapour density close to the surface; Q,

Lir 1S the water vapour density in the

atmosphere; a; and b, are user specified constants. The default values are a; = 0.5
and b; =0.9.

Measurements of Q.. and Q. are not directly available but the vapour density can
be related to the vapour pressure as

0.2167
= é; (2.105)

Qi_T;'i'Tk i

in which subscript i refers to both water and air. The vapour pressure close to the sea,

e,.aer » CaN be expressed in terms of the water temperature assuming that the air close to

the surface is saturated and has the same temperature as the water

€ater = 6.11€" SR - (2.106)
Ty Touer + 15

water

where K =5418°K and Ty =273.15 °K is the temperature at 0 C. Similarly the
vapour pressure of the air, e
relative humidity, R

qir» ©aN be expressed in terms of the air temperature and the

€.ir :R611€K(%—ﬁ] (2.107)
k 1y

air
Replacing O, and O, with these expressions the latent heat can be written as

qv = _P\* (al + bII/VZm) ’

exp| K rr R-exp| K 1 __ 1
711& ]:mler + T}\ 711. T;m- + ]7\ (2 1 08)

.. +T, +7,

water

air

where all constants have been included in a new latent constant P, = 4370 J - °K/m>.

During cooling of the surface the latent heat loss has a major effect with typical values up
to 100 W/m’.
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The wind speed, W,, 2 m above the sea surface is calculated from the from the wind
speed, W;o, 10 m above the sea surface using the following formula:

Assuming a logarithmic profile the wind speed, u(z), at a distance z above the sea surface
is given by

w7} = Ll log[—z—] (2.109)
K 2

o

where 1, is the wind friction velocity, z, is the sea roughness and x =0.4 is von

Karman's constant. u#, and z, are given by

2
Zy = Z(V:ul'noc,(u* /g (2.110)

xu(z)

log(i] 2.111)
Z

where z.,..... IS the Charnock parameter. The default value is z,,,,,= 0.014. The

wind speed, W,, 2 m above the sea surface is then calculated from the from the wind
speed, Wy, 10m above the sea surface by first solving Eq. (2.114) and Eq. (2.115)
iteratively for zo with z=10m and u(z)=Wj,. Then W, is given by

log(ij
W, = & W, >0.5m/s

Wo——X
10 (2.112)
log(—j
Zy

w,=W, W,<05m/s

U, =

The heat loss due to vaporization occurs both by wind driven forced convection by and
free convection. The effect of free convection is taken into account by the parameter a; in
Eq. (2.104). The free convection is also taken into account by introducing a critical wind
speed Wiica SO that the wind speed used in Eq. (2.112) is obtained as

Wio=max(Wyo, Weriica) . The default value for the critical wind speed is 2 m/s.

2.10.2 Convection

The sensible heat flux, g, (W/n72), (or the heat flux due to convection) depends on the

type of boundary layer between the sea surface and the atmosphere. Generally this
boundary layer is turbulent implying the following relationship

pal'l‘ctli)‘cheulmvilO(71117‘ - T:vater) 7—;n'r = T
q. = (2.113)
paircuwccoolingVV]O(T:zn' - 71\1'(110)‘) ]:lil‘ < T
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where p,, is the air density 1.225 kg/m’; ¢, =1007 J /(kg-°K) is the specific heat of

air; ¢;,4un, =0.0011 and ¢ =0.0011, respectively, is the sensible transfer

cooling

coefficient (or Stanton number) for heating and cooling (see Kantha and Clayson, 2000);

W,, is the wind speed 10 m above the sea surface; 7, is the temperature at the sea

surface; T’

i 18 the temperature of the air.

The convective heat flux typically varies between 0 and 100 W/m®.

The heat loss due to convection occurs both by wind driven forced convection by and free
convection. The free convection is taken into account by introducing a critical wind speed
Wiical SO that the wind speed used in Eq. (2.113) is obtained as Wyo=max(W;o, Wetica)) -
The default value for the critical wind speed is 2 m/s.

2.10.3 Short wave radiation

Radiation from the sun consists of electromagnetic waves with wave lengths varying from
1,000 to 30,000 A. Most of this is absorbed in the ozone layer, leaving only a fraction of
the energy to reach the surface of the Earth. Furthermore, the spectrum changes when
sunrays pass through the atmosphere. Most of the infrared and ultraviolet compound is
absorbed such that the solar radiation on the Earth mainly consists of light with wave
lengths between 4,000 and 9,000 A. This radiation is normally termed short wave
radiation. The intensity depends on the distance to the sun, declination angle and latitude,
extraterrestrial radiation and the cloudiness and amount of water vapour in the
atmosphere (see Igbal, 1983)

The eccentricity in the solar orbit, £, is given by

(2.114)

2
E, = (’—Oj =1.000110 +0.034221cos(I") +0.001280sin(T")
.

+0.000719cos(2I") + 0.000077 sin(2I")

where 7, is the mean distance to the sun, ris the actual distance and the day angle
I" (rad) is defined by

_2x(d,-1)
365

r (2.115)

and d,, is the Julian day of the year.

The daily rotation of the Earth around the polar axes contributes to changes in the solar
radiation. The seasonal radiation is governed by the declination angle, & (rad), which

can be expressed by

S5 =0.006918 —0.399912 cos(T") +0.07257 sin(T") —
0.006758cos(2I") +0.000907 sin(2I") — (2.116)
0.002697 cos(3T) +0.00148sin(3I")
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The day length, n,, varies with & . For a given latitude, ¢, (positive on the northern
hemisphere) the day length is given by

Ny = 2;4arccos(— tan(¢) tan(é)) (2.117)

and the sunrise angle, @, (rad), and the sunset angle @, (rad) are
@, = arccos (— tan(¢)tan(5)) and oy =-w,, (2.118)

The intensity of short wave radiation on the surface parallel to the surface of the Earth
changes with the angle of incidence. The highest intensity is in zenith and the lowest
during sunrise and sunset. Integrated over one day the extraterrestrial intensity,

H, (M]/m2 / day), in short wave radiation on the surface can be derived as

HO = —ZE qu'cEO COS(¢)COS(5XSin(a)sr )_ a)sr COS(CO_”, )) (2'1 19)
T

where q,, = 4.9212 (MJ /m* / h) is the solar constant.

For determination of daily radiation under cloudy skies, H (MJ /m* / day), the following
relation is used

H n
=a, +b, — (2.120)
0 ny
in which 1 is the number of sunshine hours and 7, is the maximum number of sunshine
hours. @, and b, are user specified constants. The default values are a, =0.295 and

b, =0.371. The user-specified clearness coefficient corresponds to 7/ 7, . Thus the
solar radiation, g, (W /m?), can be expressed as

H 10°
q, —[E]qo(a3+b3cos(w,))—3m (2.121)
where
ay = 0.4090 +0.501 6sin(a)sr = %) (2.122)
by = 0.6609+0.4767 sin(a)s,. ——;’—j (2.123)

The extraterrestrial intensity, g, (MJ/m* /) and the hour angle @, is given by

24 Hydrodynamic and Transport Module - © DHI



—_—

g“\\
Governing Equations MIKE "y

: . 24
9o = 9.0 (sm(¢)sm(5)+ =~ cos(p)cos(5)cos(a, )] (2.124)
T
V4 4 E
;= E (12 + Ardisplacement + @ (LS _LE )— 6_6 - tlocalj (2.125)
Ard,.sp,acemem is the displacement hours due to summer time and the time meridian L, is

the standard longitude for the time zone. Algstacement and L, are user specified
constants. The default values are Af ;o 1comen =0 (7) @and Lg =0 (deg) L, is the

local longitude in degrees. E, (i) is the discrepancy in time due to solar orbit and is
varying during the year. It is given by

1

(0.000075 +0.001868 cos(I") — 0.032077 sin(I")

_ .229.18 (2.126)
—0.014615c0s(2I") — 0.04089sin(2I")

Finally, ?,,., is the local time in hours.

Solar radiation that impinges on the sea surface does not all penetrate the water surface.
Parts are reflected back and are lost unless they are backscattered from the surrounding
atmosphere. This reflection of solar energy is termed the albedo. The amount of energy,
which is lost due to albedo, depends on the angle of incidence and angle of refraction. For
a smooth sea the reflection can be expressed as

(2.127)

2\ sin2G+r)  tan?(i+r)

~ 1[si112(i—r) +tan2(i—r)]

where i is the angle of incidence, r the refraction angle and « the reflection coefficient,
which typically varies from 5 to 40 %. & can be approximated using

@ 0.48 altitude <5

30 altitude (4 45 _0.05) 5 < alritude <30 (2.128)

0.05 altitude > 30

where the altitude in degrees is given by

altitude =90 — [@ arccos(sin(d)sin(¢) + cos(d) cos(@) cos(w, ))j (2.129)
T

Thus the net short wave radiation, g ., (W/mz), can possibly be expressed as

Dy = (1-2) 1, (2.130)
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The net short wave radiation, gsnet, can be calculated using empirical formulae as
described above. Alternatively, the net short wave radiation can be calculated using Eq.
(2.130) where the solar radiation, qs, is specified by the user or the net short wave
radiation, gsrnet, CaN be given by the user.

2.10.4 Long wave radiation

26

A body or a surface emits electromagnetic energy at all wavelengths of the spectrum. The
long wave radiation consists of waves with wavelengths between 9,000 and 25,000 A.
The radiation in this interval is termed infrared radiation and is emitted from the
atmosphere and the sea surface. The long wave emittance from the surface to the
atmosphere minus the long wave radiation from the atmosphere to the sea surface is
called the net long wave radiation and is dependent on the cloudiness, the air
temperature, the vapour pressure in the air and the relative humidity. The net outgoing

long wave radiation, g, .., (W /m?), is given by Brunt's equation (See Lind and
Falkenmark, 1972)

QII',HEI = —asb (Tair ki TK )4 (a ~b ed {C + dij (2.131)
nd

where e, is the vapour pressure at dew point temperature measured in mb; n is the

number of sunshine hours, 7, is the maximum number of sunshine hours;

0 =5.6697-107° W [(m* -°K*) is Stefan Boltzman's constant; T,,,.(°C) is the air
temperature. The coefficients a, b, c and d are given as

a=0.56;b=0.077mb™"*;c=0.10;d =.90 (2.132)
The vapour pressure is determined as
e; =10-Re

(2.133)

saturated

where R is the relative humidity and the saturated vapour pressure, €, qeq (KPc), with
100 % relative humidity in the interval from —51 to 52 °C can be estimated by

emlumlad = 3 3 8639 :
((7:38-107-7,, +0.8072)" ~1.9-10” |1.8~T",,,+48|+1.316-10’3) B
The net long wave radiation, g e, can be calculated using empirical formulae as
described above. Alternatively, the net long wave radiation can be calculated as
qlr,m’l = qm',nel - th (2 1 35)

where the net incident atmospheric radiation, garnet, is specified by the user and the back
radiation, qy;, is given by

g, =(1-reo Ty (2.136)
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where r=0.03 is the reflection coefficient and £=0.985 is the emissivity factor of the
atmosphere. The net long wave radiation can also be specified by the user.
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3 Numerical Solution

< Spatial Discretization

The discretization in solution domain is performed using a finite volume method. The
spatial domain is discretized by subdivision of the continuum into non-overlapping
cells/elements.

In the two-dimensional case the elements can be arbitrarily shaped polygons, however,
here only triangles and quadrilateral elements are considered.

In the three-dimensional case a layered mesh is used: in the horizontal domain an
unstructured mesh is used while in the vertical domain a structured mesh is used (see
Figure 3.1). The vertical mesh is based on either sigma coordinates or combined sigma/z-
level coordinates. For the hybrid sigma/z-level mesh sigma coordinates are used from the
free surface to a specified depth and z-level coordinates are used below. The different
types of vertical mesh are illustrated in Figure 3.2. The elements in the sigma domain and
the z-level domain can be prisms with either a 3-sided or 4-sided polygonal base. Hence,
the horizontal faces are either triangles or quadrilateral element. The elements are
perfectly vertical and all layers have identical topology.

\\ / /
X
/ 9 N
. . X
M~ ¢ < 3 <
— ] — ]
-\_h_
.
— I I S S e
L

Figure 3.1 Principle of meshing for the three-dimensional case
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Figure 3.2 lllustrations of the different vertical grids. Upper: sigma mesh, Lower: combined

sigmal/z-level mesh with simple bathymetry adjustment. The red line shows the
interface between the z-level domain and the sigma-level domain

The most important advantage using sigma coordinates is their ability to accurately
represent the bathymetry and provide consistent resolution near the bed. However, sigma
coordinates can suffer from significant errors in the horizontal pressure gradients,
advection and mixing terms in areas with sharp topographic changes (steep slopes).
These errors can give rise to unrealistic flows.

The use of z-level coordinates allows a simple calculation of the horizontal pressure
gradients, advection and mixing terms, but the disadvantages are their inaccuracy in
representing the bathymetry and that the stair-step representation of the bathymetry can
result in unrealistic flow velocities near the bottom.
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3.1.1 Vertical Mesh

Sigma
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For the vertical discretization both a standard sigma mesh and a combined sigma/z-level
mesh can be used. For the hybrid sigma/z-level mesh sigma coordinates are used from
the free surface to a specified depth, z,, and z-level coordinates are used below. At least
one sigma layer is needed to allow changes in the surface elevation.

In the sigma domain a constant number of layers, N, are used and each sigma layer is a
fixed fraction of the total depth of the sigma layer, h,, where h, = n — max(z,z,). The
discretization in the sigma domain is given by a number of discrete o-levels {g;, i =

1, (N, + 1)}. Here o varies from g; = 0 at the bottom interface of the lowest sigma layer
to oy, +1 =1 at the free surface.

Variable sigma coordinates can be obtained using a discrete formulation of the general
vertical coordinate (s-coordinate) system proposed by Song and Haidvogel (1994). First
an equidistant discretization in a s-coordinate system (-1< s <0) is defined

Ny+1—i

S =
N
a

i=1(Ns+1) (3.1)
The discrete sigma coordinates can then be determined by

o, =1+os+(1-0)ls,) i=1LH, +1) (32)

where

sinh(6s) tanh <9 (s + %)) — tanh(%)
c(s)=(10-b) Sinh(0) +b

(3.3)

Ztanh(%)

Here o, is a weighting factor between the equidistant distribution and the stretch
distribution, 6 is the surface control parameter and b is the bottom control parameter. The
range for the weighting factor is 0<o.<7 where the value 1 corresponds to equidistant
distribution and 0 corresponds to stretched distribution. A small value of o, can result in
linear instability. The range of the surface control parameter is 0<6<20 and the range of
the bottom control parameter is 0<b<1. If 6<<7 and b=0 an equidistant vertical resolution
is obtained. By increasing the value of the 6, the highest resolution is achieved near the
surface. If >0 and b=1 a high resolution is obtained both near the surface and near the
bottom.

Examples of a mesh using variable vertical discretization are shown in Figure 3.3 and
Figure 3.4.
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Combined sigma/z-level

32

In the z-level domain the discretization is given by a number of discrete z-levels {z;, i =
1, (N, + 1)}, where N, is the number of layers in the z-level domain. z; is the minimum z-
level and zy,_4 is the maximum z-level, which is equal to the sigma depth, z.. The
corresponding layer thickness is given by

AZl' =Zjy1 — Zj i=1, NZ (3.4)
The discretization is illustrated in Figure 3.5 and Figure 3.6.
Using standard z-level discretization the bottom depth is rounded to the nearest z-level.

Hence, for a cell in the horizontal mesh with the cell-averaged depth, z;, the cells in the
corresponding column in the z-domain are included if the following criteria is satisfied
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(Ziv1—2z)/222, i=1N, (35)

The cell-averaged depth, z, is calculated as the mean value of the depth at the vortices
of each cell. For the standard z-level discretization the minimum depth is given by z;. Too
take into account the correct depth for the case where the bottom depth is below the
minimum z-level (z; > z,;,) a bottom fitted approach is used. Here, a correction factor, £,
for the layer thickness in the bottom cell is introduced. The correction factor is used in the
calculation of the volume and face integrals. The correction factor for the bottom cell is
calculated by

(Zz - Zb)
f —ee e 3.6
1 .‘Zl ( )

The corrected layer thickness is given by Az; = f;Az;. The simple bathymetry
adjustment approach is illustrated in Figure 3.5.

For a more accurate representation of the bottom depth an advanced bathymetry
adjustment approach can be used. For a cell in the horizontal mesh with the cell-averaged
depth, z, the cells in the corresponding column in the z-domain are included if the
following criteria is satisfied

Zit1 > Zp i=1,N, iy

A correction factor, f;, is introduced for the layer thickness

fizmax(

(Zi+1 - Zb) Zmin
Z; < zZp < Zjpq OT Z1 > Zp

AZl' ’ AZl'
fi =1 Zq > Zp

A minimum layer thickness, Az,,;,, is introduced to avoid very small values of the
correction factor. The correction factor is used in the calculation of the volume and face
integrals. The corrected layer thicknesses are given by {Az; = f;Az;, i =1, N,}. The
advanced bathymetry adjustment approach is illustrated in Figure 3.6.

\
i ™
=24
\ Az5
z=13 N
Az,

=7y \

=71

N

\
'\\‘

Figure 3.5 Simple bathymetry adjustment approach
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Figure 3.6 Advanced bathymetry adjustment approach

3.1.2 Shallow water equations

The integral form of the system of shallow water equations can in general form be written

aa_(r] +V-F(U)=SU) (3.9)

where U is the vector of conserved variables, F is the flux vector function and S is the
vector of source terms.
In Cartesian coordinates the system of 2D shallow water equations can be written
1 I 1 14
ou O\F, -F;) O\F, -F,
ou oK -F) o(E-F)_
ot ox

(3.10)

where the superscripts / and V denote the inviscid (convective) and viscous fluxes,
respectively and where
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In Cartesian coordinates the system of 3D shallow water equations can be written
oU oF' ©OF, oF' oF" OoF, oF’
e 4 +—+—+ +—2

+ =S (3.12)
o ox' oy Oo Ox oy Oo

where the superscripts / and V denote the inviscid (convective) and viscous fluxes,
respectively and where
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(3.13)

Integrating Eq. (3.9) over the ith cell and using Gauss'’s theorem to rewrite the flux integral

gives

L, ‘Z—[f]dg+ Jr, (F-n)ds= L’ SO

(3.14)

where 4, is the area/volume of the cell Q is the integration variable defined on 4, , I

is the boundary of the ith cell and ds is the integration variable along the boundary. n is
the unit outward normal vector along the boundary. Evaluating the area/volume integrals
by a one-point quadrature rule, the quadrature point being the centroid of the cell, and
evaluating the boundary intergral using a mid-point quadrature rule, Eq. (3.14) can be

written
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1 NS
%(j—ur;ZF.nArj:S, (3.15)
: ,

I

Here U, and S, , respectively, are average values of U and S over the ith cell and stored
at the cell centre, NS is the number of sides of the cell, n, is the unit outward normal
vector at the jth side and AT, the length/area of the jth interface.

Both a first order and a second order scheme can be applied for the spatial discretization.

For the 2D case an approximate Riemann solver (Roe's scheme, see Roe, 1981) is used
to calculate the convective fluxes at the interface of the cells. Using the Roe’s scheme the
dependent variables to the left and to the right of an interface have to be estimated.
Second-order spatial accuracy is achieved by employing a linear gradient-reconstruction
technique. The average gradients are estimated using the approach by Jawahar and
Kamath, 2000. To avoid numerical oscillations a second order TVD slope limiter (Van
Leer limiter, see Hirch, 1990 and Darwish, 2003) is used.

For the 3D case an approximate Riemann solver (Roe’s scheme, see Roe, 1981) is used
to calculate the convective fluxes at the vertical interface of the cells (x'y’-plane). Using
the Roe’s scheme the dependent variables to the left and to the right of an interface have
to be estimated. Second-order spatial accuracy is achieved by employing a linear
gradient-reconstruction technique. The average gradients are estimated using the
approach by Jawahar and Kamath, 2000. To avoid numerical oscillations a second order
TVD slope limiter (Van Leer limiter, see Hirch, 1990 and Darwish, 2003) is used. The
convective fluxes at the horizontal interfaces (vertical line) are derived using first order
upwinding for the low order scheme. For the higher order scheme the fluxes are
approximated by the mean value of the fluxes calculated based on the cell values above
and below the interface for the higher order scheme.

3.1.3 Transport equations

The transport equations arise in the salt and temperature model, the turbulence model
and the generic transport model. They all share the form of Equation Eq. (2.20) in
Cartesian coordinates. For the 2D case the integral form of the transport equation can be
given by Eq. (3.9) where

U=hC

F' = [hﬁé, /7176]

, # & (3.16)
o =[hD,,a_C, WD, 6_6}
ox oy

8§ =—hk,C+hCS.

For the 3D case the integral form of the transport equation can be given by Eq. (3.9)
where
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U=hC

F’z[huC, hvC, ha)C]

; 3.17
F'= hD,,a—aE, hD,,aa—C, n2epoC e
ox oy h Ooc

S = —hk,C +hC.S.

The discrete finite volume form of the transport equation is given by Eq. (3.15). As for the
shallow water equations both a first order and a second order scheme can be applied for
the spatial discretization.

In 2D the low order approximation uses simple first order upwinding, i.e., element
average values in the upwinding direction are used as values at the boundaries. The
higher order version approximates gradients to obtain second order accurate values at
the boundaries. Values in the upwinding direction are used. To provide stability and
minimize oscillatory effects, a TVD-MUSCL limiter is applied (see Hirch, 1990, and
Darwish, 2003).

In 3D the low order version uses simple first order upwinding. The higher order version
approximates horizontal gradients to obtain second order accurate values at the
horizontal boundaries. Values in the upwinding direction are used. To provide stability and
minimize oscillatory effects, an ENO (Essentially Non-Oscillatory) type procedure is
applied to limit the horizontal gradients. In the vertical direction a 3" order ENO procedure
is used to obtain the vertical face values (Shu, 1997).

3.2  Time Integration
Consider the general form of the equations

oU
—=G(U :
Py (U) (3.18)

For 2D simulations, there are two methods of time integration for both the shallow water
equations and the transport equations: A low order method and a higher order method.
The low order method is a first order explicit Euler method

U.=U+At GU,) (3.19)

n+l T

where At is the time step interval. The higher order method uses a second order Runge
Kutta method on the form:

U . =U+3At GU,)

U,,=U+MGU,)

n+l

(3.20)
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For 3D simulations the time integration is semi-implicit. The horizontal terms are treated
implicitly and the vertical terms are treated implicitly or partly explicitly and partly implicitly.
Consider the equations in the general semi-implicit form.

68—[’] =G,(U)+G,(BU)=G,(U)+G (U)+G. (U) (3.21)

where the 7 and v subscripts refer to horizontal and vertical terms, respectively, and the
superscripts refer to invicid and viscous terms, respectively. As for 2D simulations, there
is a lower order and a higher order time integration method.

The low order method used for the 3D shallow water equations can written as

U

n+l % At (Gv(l]nﬂ) + G\'(Un)) . Un + Af Glz(l]n) (3'22)
The horizontal terms are integrated using a first order explicit Euler method and the
vertical terms using a second order implicit trapezoidal rule. The higher order method can
be written

Un+1/2 - % At (Gv (U)1+l/2) + G\*(Un )) = Un + % At Gh (Un) (3.23)
%Ar (G\'(U) l) + G\'(Un)) = Un + Af Gh (Un+l/2) |

U

n+l 1+

The horizontal terms are integrated using a second order Runge Kutta method and the
vertical terms using a second order implicit trapezoidal rule.

The low order method used for the 3D transport equation can written as

U

n+l % A’( G\{/((JIHI) + G\l'/ (Un)) = Un + Af G/I(UH) + Af G\{(Un) (324)
The horizontal terms and the vertical convective terms are integrated using a first order
explicit Euler method and the vertical viscous terms are integrated using a second order

implicit trapezoidal rule. The higher order method can be written

U, =48 (G)(U,,)+ Gl (U,)) =
Un + %AI‘ GII(Un) + %Af G\]'(Un)

| . . (3.25)
LA (G (U,,)+G(U,))=

U

nl n+

Un +At GII(U)H-I/Z) + At G\{(U)HI/Z)

The horizontal terms and the vertical convective terms are integrated using a second
order Runge Kutta method and the vertical terms are integrated using a second order
implicit trapezoidal rule for the vertical terms.
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Boundary Conditions

Closed boundaries

Along closed boundaries (land boundaries), normal fluxes are forced to zero for all
variables. For the momentum equations, this leads to full-slip along land boundaries. For
the shallow water equations, the no slip condition can also be applied where both the
normal and tangential velocity components are zero.

Open boundaries

For the shallow water equations a number of different boundary conditions can be applied

The flux, velocity and Flather boundary conditions are all imposed using a weak
approach. A ghost cell technique is applied where the primitive variables in the ghost cell
are specified. The water level is evaluated based on the value of the adjacent interior cell,
and the velocities are evaluated based on the boundary information. For a discharge
boundary, the transverse velocity is set to zero for inflow and passively advected for
outflow. The boundary flux is then calculated using an approximate Riemann solver.

The Flather (1976) condition is one of the most efficient open boundary conditions. It is
very efficient in connection with downscaling coarse model simulations to local areas (see
Oddo and Pinardi (2007)). The instabilities, which are often observed when imposing
stratified density at a water level boundary, can be avoided using Flather conditions

The level boundary is imposed using a strong approach based on the characteristic
theory (see e.g. Sleigh et al., 1998).

The discharge boundary condition is imposed using both a weak formulation using ghost
cell technique described above and a strong approach based on the characteristic theory
(see e.g. Sleigh et al., 1998).

Note that using the weak formulation for a discharge boundary the effective discharge
over the boundary may deviate from the specified discharge.

For transport equations, either a specified value or a zero gradient can be given. For
specified values, the boundary conditions are imposed by applying the specified
concentrations for calculation of the boundary flux. For a zero gradient condition, the
concentration at the boundary is assumed to be identical to the concentration at the
adjacent interior cell.

Flooding and drying

The approach for treatment of the moving boundaries problem (flooding and drying fronts)
is based on the work by Zhao et al. (1994) and Sleigh et al. (1998). When the depths are
small the problem is reformulated and only when the depths are very small the
elements/cells are removed from the calculation. The reformulation is made by setting the
momentum fluxes to zero and only taking the mass fluxes into consideration.

The depth in each element/cell is monitored and the elements are classified as dry,
partially dry or wet. Also the element faces are monitored to identify flooded boundaries.
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An element face is defined as flooded if the following two criteria are satisfied: Firstly,

the water depth at one side of face must be less than a tolerance depth, 7, , and

the water depth at the other side of the face larger than a tolerance depth, hﬂmd.

Secondly, the sum of the still water depth at the side for which the water depth is less
than £, and the surface elevation at the other side must be larger than zero.

An element is dry if the water depth is less than a tolerance depth, 7/ and no of

dry?
the element faces are flooded boundaries. The element is removed from the
calculation.

An element is partially dry if the water depth is larger than hd,,y and less than a

tolerance depth, A

wel !

or when the depth is less than the 7, and one of the

element faces is a flooded boundary. The momentum fluxes are set to zero and only
the mass fluxes are calculated.

An element is wet if the water depth is greater than /4, . Both the mass fluxes and

wel *

the momentum fluxes are calculated.

The wetting depth, A
h

must be larger than the drying depth, & and flooding depth,

wel ! dry !

Jooar MUSE satisfy

hdry < hﬂoad < hu‘al (326)

The default values are 7,

=0.005m, hy,,,=0.05m and h,,, =0.1m.

Note, that for very small values of the tolerance depth, 4, , unrealistically high flow

wel !

velocities can occur in the simulation and give cause to stability problems.
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4 Infiltration and Leakage

The effect of infiltration and leakage at the surface zone may be important in cases of
flooding scenarios on otherwise dry land. It is possible to account for this in one of two
ways: by Net infiltration rates or by constant infiltration with capacity.

-1 j j*1

L. Surface zone

Infiltration
Q

//77\\_/

Infiltration zone

Leakage

Figure 4.1 lllustration of infiltration process

4.1 Net Infiltration Rates

The net infiltration rate is defined directly. This will act as a simple sink in each element in
the overall domain area.

The one-dimensional vertical continuity equation is solved at each hydrodynamic time
step after the two-dimensional horizontal flow equations have been solved. The
calculation of the new water depth in the free surface zone for each horizontal element is
found by

H(G) = H() — Vinfiltration(j) /AG) (4.1)

Where Vi, rutration () is the infiltrated volume in element (j) and A(j) the area of the
element.

If H(j) becomes marked as dry then element (j) will be taken out of the two-dimensional
horizontal flow calculations and no infiltration can occur until the element is flooded again.
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In summary: when using Net infiltration rate an unsaturated zone is never specified and
thus has no capacity limits, so the specified infiltration rates will always be fully
effectuated as long as there is enough water available in the element.

4.2  Constant Infiltration with Capacity

Constant infiltration with capacity describes the infiltration from the free surface zone to
the unsaturated zone and from the unsaturated zone to the saturated zone by a simplified
model. The model assumes the following:

The unsaturated zone is modelled as an infiltration zone with constant porosity over
the full depth of the zone.

The flow between the free surface zone and the infiltration zone is based on a
constant flow rate, i.e. Viyfitration = Qi - At Where Q; is the prescribed flow rate.

The flow between the saturated and unsaturated zone is modelled as a leakage Q,
having a constant flow rate, i.e. Vigqrage = Qi * At.

The simplified model described above is solved through a one-dimensional continuity
equation. Feedback from the infiltration and leakage to the two-dimensional horizontal
hydrodynamic calculations is based solely on changes to the depth of the free surface
zone — the water depth.

Note that the infiltration flow cannot exceed the amount of water available in the free
surface water zone nor the difference between the water capacity of the infiltration zone
and the actual amount of water stored there. It is possible that the infiltration flow
completely drains the free surface zone from water and thus creates a dried-out point in
the two-dimensional horizontal flow calculations.

The one-dimensional vertical continuity equation is solved at each hydrodynamic time
step after the two-dimensional horizontal flow equations have been solved. The solution
proceeds in the following way:

1. Calculation of the volume from leakage flow in each horizontal element — Vi qxqge ()

Vleakage ()= Q()-At-AQY) (4.2)
Vleakage 0 = min(Vleakage M, Vi) (4.3)
Vi(j) := Vi) - Vleakage(j) (4.4)

Where V;(j) is the total amount of water in the infiltration zone and Q,(j) is the
leakage flow rate.

2. Calculation of the volume from infiltration flow in each horizontal element —

Vingutration ()
VinfitrationU) = Qi()) - At - A(j) (4.5)
Vingiteration () = min (Vinraeration () , SCG; () — Vi), H() - A() (4.6)
Vi()) := Vi) + Vinrieration () (4.7)
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Where Q;()) is the infiltration rate, SC;(j) is the water storage capacity and H(j) the
depth of the free surface.

3. Calculation of the new water depth in the free surface zone for each horizontal

element
H() = H() - Vinfiltration(j)/A(i) (4.8)

If H(j) becomes marked as dry then element (j) will be taken out of the two-dimensional
horizontal flow calculations. The element can still leak but no infiltration can occur until the
element is flooded again.

The water storage capacity of the infiltration zone is calculated as
S¢() =z() - AG) -v() (4.9)
Where Z;(j) is the depth of the infiltration zone and y(j) is the porosity of the same zone.

In summary, when using Constant infiltration with capacity there can be situations where
the picture is altered and the rates are either only partially effectuated or not at all:

If = H(j) < Hgry on the surface (dry surface) => infiltration rate is not effectuated

If: the water volume in the infiltration zone reaches the full capacity => infiltration rate
is not effectuated

If: the water volume is zero in the infiltration zone (the case in many initial conditions)
=> |eakage rate is not effectuated

Leakage volume must never eclipse the available water volume in the infiltration
zone, if so we utilise the available water volume in infiltration zone as leakage
volume

Infiltration volume must never eclipse the available water volume on the surface, if so
we utilise the available water on the surface as infiltration volume
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Validation

The new finite-volume model has been successfully tested in a number of basic, idealised
situations for which computed results can be compared with analytical solutions or
information from the literature. The model has also been applied and tested in more
natural geophysical conditions; ocean scale, inner shelves, estuaries, lakes and overland,
which are more realistic and complicated than academic and laboratory tests. A detailed
validation report is under preparation.

This chapter presents a comparison between numerical model results and laboratory
measurements for a dam-break flow in an L-shaped channel.

Additional information on model validation and applications can be found here

http://www.mikepoweredbydhi.com/download/product-documentation

Dam-break Flow through Sharp Bend

The physical model to be studied combines a square-shaped upstream reservoir and an
L-shaped channel. The flow will be essentially two-dimensional in the reservoir and at the
angle between the two reaches of the L-shaped channel. However, there are numerical
and experimental evidences that the flow will be mostly unidimensional in both rectilinear
reaches. Two characteristics or the dam-break flow are of special interest, namely

The "damping effect" of the corner
The upstream-moving hydraulic jump which forms at the corner

The multiple reflections of the expansion wave in the reservoir will also offer an
opportunity to test the 2D capabilities of the numerical models. As the flow in the reservoir
will remain subcritical with relatively small-amplitude waves, computations could be
checked for excessive numerical dissipation.

Physical experiments

A comprehensive experimental study of a dam-break flow in a channel with a 90 bend has
been reported by Fraz&o and Zech (2002, 1999a, 1999b). The channel is made of a 3.92
and a 2.92 metre long and 0.495 metre wide rectilinear reaches connected at right angle
by a 0.495 x 0.495 m square element. The channel slope is equal to zero. A guillotine-
type gate connects this L-shaped channel to a 2.44 x 2.39 m (nearly) square reservoir.
The reservoir bottom level is 33 cm lower that the channel bed level. At the downstream
boundary a chute is placed. See the enclosed figure for details.

Fraz&o and Zech performed measurements for both dry bed and wet bed condition. Here
comparisons are made for the case where the water in the reservoir is initially at rest, with
the free surface 20 cm above the channel bed level, i.e. the water depth in the reservoir is
53 cm. The channel bed is initially dry. The Manning coefficients evaluated through
steady-state flow experimentation are 0.0095 and 0.0195 s/m"®, respectively, for the bed
and the walls of the channel.
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The water level was measured at six gauging points. The locations of the gauges are
shown in Figure 5.1 and the coordinates are listed in Table 5.1.
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Figure 5.1 Set-up of the experiment by Frazdo and Zech (2002)
Table 5.1 Location of the gauging points
Location X (m) y (m)
T1 1.19 1.20
T2 2.74 0.69
T3 4.24 0.69
T4 5.74 0.69
T5 6.56 1.51
T6 6.56 3.01

Numerical experiments

Simulations are performed using both the two-dimensional and the three-dimensional
shallow water equations.

An unstructured mesh is used containing 18311 triangular elements and 9537 nodes. The
minimum edge length is 0.01906 m and the maximum edge length is 0.06125 m. In the
3D simulation 10 layers is used for the vertical discretization. The time step is 0.002 s. At
the downstream boundary, a free outfall (absorbing) boundary condition is applied. The
wetting depth, flooding depth and drying depth are 0.002 m, 0.001 m and 0.0001 m,
respectively.

A constant Manning coefficient of 105.26 m"/s is applied in the 2D simulations, while a
constant roughness height of 5:10° m is applied in the 3D simulation.

Hydrodynamic and Transport Module - © DHI
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5.1.3 Results

In Figure 5.2 time series of calculated surface elevations at the six gauges locations are
compared to the measurements. In Figure 5.3 contour plots of the surface elevations are
shown at T = 1.6, 3.2 and 4.8 s (two-dimensional simulation).

In Figure 5.4 a vector plot and contour plots of the current speed at a vertical profile along
the centre line (from (x,y)=(5.7, 0.69) to (x,y)=(6.4, 0.69)) at T = 6.4 s is shown.

0.20 0.20

o
e
o
=]
g
o

Elevation (m)
o
=)
o
=
=]

Elevation (m)

(S,

o
=]
@

o

=]

a

00:00:00 00:00:10  00:00:20  00:00:30 00:00.00 00:00:10  00:00:20  00:00:30
0.20 0.20
015 o015
E E
= c
2 0.10 2010
g g
@ Q
w w
0.05 0.05
0.00 LA L S L A B B 0.00 T LB L A A
00:00:00 00:00:10 00:00:20  00:00:30 00:00.00 00:00:10  00:00:20  00:00:30
0.20 0.20
015 __015
E E i
c =
§ 0.10 | .% 0.10
Ky i @
w w
0.05 0.05
opp Ht———" oo M4 ——————————
00:00:00 00:00:10 00:00:20  00:00:30 00:00.00 00:00:10  00:00:20  00:00:30

Figure 5.2  Time evolution of the water level at the six gauge locations. (blue) 3D calculation,
(black) 2D calculation and (red) Measurements by Frazédo and Zech (1999a,b)
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Figure 5.3 Contour plots of the surface elevationat T = 1.6 s (top), T = 3.2 s (middle) and T = 4.8

s (bottom).
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Figure 54  Vector plot and contour plots of the current speed at a vertical profile along the centre
lineatT=6.4s
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