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1 lntroduction 

This document presents the scientific background for the new MIKE 21 & MIKE 3 Flow 
Model FM 1 modelling system developed by DHI Water & Environment. The objective is to 
provide the user with a detailed description of the flow and transport model equations, 
numerical discretization and solution methods. Also model validation is discussed in this 
document. 

The MIKE 21 & MIKE 3 Flow Model FM is based on a flexible mesh approach and it has 
been developed for applications within oceanographic, coastal and estuarine 
environments. The modelling system may also be applied for studies of overland flooding . 

The system is based on the numerical solution of the two/three-dimensional 
incompressible Reynolds averaged Navier-Stokes equations invoking the assumptions of 
Boussinesq and of hydrostatic pressure. Thus, the model consists of continuity, 
momentum, temperature, salinity and density equations and it is closed by a turbulent 
closure scheme. For the 3D model the free surface is taken into account using a sigma 
coordinate transformation approach . 

The spatia l discretization of the primitive equations is performed using a cell -centred finite 
volume method. The spatial domain is discretized by subdivision of the continuum into 
non-overlapping elements/cells. In the horizontal plane an unstructured grid is used while 
in the vertical domain in the 3D model a structured mesh is used . In the 2D model the 
elements can be triangles or quadrilateral elements. In the 3D model the elements can be 
prisms or bricks whose horizontal faces are triangles and quadrilateral elements, 
respectively. 

1 lncluding the MIKE 21 Flow Model FM (two-dimensional flow) and MIKE 3 Flow Model FM (three­
dimensional flow) 
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2 Governing Equations 

2.1 30 Governing Equations in Cartesian Coordinates 

2.1.1 Shallow water equations 

The model is based on the solution of the three-dimensional incompressible Reynolds 
averaged Navier-Stokes equations, subject to the assumptions of Boussinesq and of 
hydrostatic pressure. 

The local continuity equation is written as 

and the two horizontal momentum equations for the x- and y-component, respectively 

au+ au
2 

+ ovu + owu = .fo - g 01] - _1_ opa -
8t ox oy 8z ox Po ox 

- - z-- - +-- + +- v - +u g f „ o p d 1 ( osxx OSX)' ) F a ( au) S 
Po 2 ax Poh 0X (~)I 

II oz I oz ·' 

av av2 auv awv 0 17 1 ap 
-+-+-+- =- fu-g- - - --a -
8t oy ox 8z oy Po oy 

g f ,,apd 1 (asy, asn· ) a ( av ) s - - z-- - · +-- +F,,+- v, - +v_,. 
Po 2 ~y p 0h ox oy 8z 8z 

(2 .1) 

(2 .2) 

(2 .3) 

where t is the time; x, y and z are the Cartesian coordinates; rJ is the surface elevation; 

d is the still water depth; h = 17 + d is the total water depth; u, v and w are the velocity 

components in the x, y and z direction ; f = 20s in <p is the Coriolis parameter ( Q is the 

angular rate of revolution and ~ the geographic latitude) ; g is the gravitational 

acceleration ; p is the density of water; sxx, s.,y' syx and sn, are components of the 

radiation stress tensor; v, is the vertical turbulent (or eddy) viscosity; Pa is the 

atmospheric pressure; p
0 

is the reference density of water. S is the magnitude of the 

discharge due to point sources and (u s, vs ) is the velocity by which the water is 

discharged into the ambient water. The horizontal stress terms are described using a 
gradient-stress relation, which is simplified to 

F,, =~(2Aau )+ ~ ( A( au + avJJ ax ax ay ay ax 
(2.4) 
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F;, = ~(A(au + av iJ+~(2A avJ ax ay ax) ay ay 

where A is the horizontal eddy viscosity. 

The surface and bottom boundary condition for u, v and w are 

At z = 7J : 

a77 ar; ar; -+u-+v-. --w=O, at ax ay 

At z = -d : 

where (r sx, r .IJ') and (r bx, r by ) are the x and y components of the surface wind and 

bottom stresses. 

(2 .5) 

(2 .6) 

(2.7) 

The total water depth, h, can be obtained from the kinematic boundary condition at the 
surface, once the velocity field is known from the momentum and continuity equations. 
However, a more robust equation is obtained by vertical integration of the local continuity 
equation 

oh ohu ohv - hS p- E­- + --+ -- - + -ar ax ay 
- -

(2.8) 

where P and E are precipitation and evaporation rates, respectively, and u and v are 
the depth-averaged velocities 

f 
1/ 

hu = udz , 
- d f 

1/ 
hv = vdz 

- d 
(2 .9) 

The fluid is assumed to be incompressible. Hence, the density, p , does not depend on 

the pressure, but only on the temperature, T, and the salinity, s, via the equation of state 

p = p(T, s) (2 .10) 

Here the UNESCO equation of state is used (see UNESCO, 1981). 

Hydrodynamic and Transport Module - © DH I 
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2.1.2 Transport equations for salt and temperature 

The transports of temperature, T, and salinity, s, follow the general transport-diffusion 
equations as 

(2 .11) 

(2 .12) 

where Dv is the vertical turbulent (eddy) diffusion coefficient. H is a source term due to 

heat exchange with the atmosphere. Ts and s s are the temperature and the salinity of 

the source. F are the horizontal diffusion terms defined by 

(2 .13) 

where D 17 is the horizontal diffusion coefficient. The diffusion coefficients can be related 

to the eddy viscosity 

A V 
D1, =- and D" =-

1 
(2 .14) 

CT r CT r 

where c, r is the Prandtl number. In many applications a constant Prandtl number can be 

used (see Radi (1984)) . 

The surface and bottom boundary conditions for the temperature are 

At z = 17 : 

D ar =~+r fa-r ft 
h a p e z Pocp 

At z = -d: 

ar =O 
az 

(2 .15) 

(2 .16) 

where Q11 is the surface net heat flux and c P = 42 17 J /(kg•° K) is the specific heat of 

the water. A detailed description for determination of fi and Q
11 

is given in Section 2.10. 

The expert in WATER ENVIRONMENTS 5 
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The surface and bottom boundary conditions for the salinity are 

At z = 1J : 

8s = 0 
Bz 

At z = -d: 

as = O 
Bz 

When heat exchange from the atmosphere is included, the evaporation is defined as 

(2 .17) 

(2 .18) 

(2 .19) 

where qv is the latent heat flux and lv = 2.5 · 106 
is the latent heat of vaporisation of 

water. 

2.1.3 Transport equation for a scalar quantity 

The conservation equation for a scalar quantity is given by 

(2 .20) 

where Cis the concentration of the scalar quantity, k P is the linear decay rate of the 

scalar quantity, Cs is the concentration of the scalar quantity at the source and D" is the 

vertical diffusion coefficient. Fe is the horizontal diffusion term defined by 

(2 .21) 

where D 11 is the horizontal diffusion coefficient. 

2.1.4 Turbulence model 

6 

The turbulence is modelled using an eddy viscosity concept. The eddy viscosity is often 
described separately for the vertical and the horizontal transport. Here several turbulence 
models can be applied: a constant viscosity, a vertically parabolic viscosity and a 
standard k-E model (Radi, 1984). In many numerical simulations the small -scale 
turbulence cannot be resolved with the chosen spatial resolution. This kind of turbulence 
can be approximated using sub-grid scale models. 

Hydrodynamic and Transport Module - © DHI 
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Vertical eddy viscosity 

The eddy viscosity derived from the log-law is calculated by 

(2 .22) 

where Ur =max{U'CT, Urb) and c1 and c2 aretwoconstants. Urs and Urb arethe 

friction velocities associated with the surface and bottom stresses, c1 = 0.41 and 

c2 = -0.41 give the standard parabolic profile . 

In applications with stratification the effects of buoyancy can be included explicitly. This is 
done through the introduction of a Richardson number dependent damping of the eddy 
viscosity coefficient, when a stable stratification occurs. The damping is a generalisation 
of the Munk-Anderson formulation (Munk and Anderson , 1948) 

v, = v,* (1 + aRi)-b (2 .23) 

where v,* is the undamped eddy viscosity and Ri is the local gradient Richardson number 

Ri = _ _K_ ap(( au )
2 +(av)2

] _ , 

Po 8z 8z 8z 

a = l O and b = 0.5 are empirical constants. 

In the k-i:; model the eddy-viscosity is derived from turbulence parameters k and c as 

k2 
v1 = cµ ­

& 

(2 .24) 

(2 .25) 

where k is the turbulent kinetic energy per unit mass (TKE), & is the dissipation of TKE 

and c P is an empirical constant. 

The turbulent kinetic energy, k, and the dissipation of TKE, & , are obtained from the 
following transport equations 

8& au& 8v& 8w& 
- +--+--+--= 
at ax ay az 

where the shear production, P, and the buoyancy production, B, are given as 

The expert in WATER ENVIRONMENTS 
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---+--~v - + -P _ r_c au ' y= av ((au)2 (av)2

] 

Po az Po az I az az 

with the Brunt-Väisälä frequency, N, defined by 

N2= _ _K_8p 
Po az 

CY1 is the turbulent Prandtl number and uk, CY [;, c 16 , c2[; and c3f; are empirical 

constants. F are the horizontal diffusion terms defined by 

The horizontal diffusion coefficients are given by D1, = A / u k and D 11 = A / u 6 , 

respectively. 

(2 .28) 

(2 .29) 

(2 .30) 

(2 .31) 

Several carefully calibrated empirical coefficients enter the k-e turbulence model. The 
empirical constants are listed in (2.47) (see Rodi, 1984). 

Table 2.1 Empirical constants in the k-c model. 

cµ Cle C2[; C3E: CY, Uk (J [; 

0.09 1.44 1.92 0 0.9 1.0 1.3 

At the surface the boundary conditions for the turbulent kinetic energy and its rate of 
dissipation depend on the wind shear, U75 

At z = 77: 

1 ? 

k = r;:-U;, 
'\Jeµ 

u;, 
r:=--

K&b 

8k =O 
az 

for ur.;> 0 

(2 .32) 

(2 .33) 

Hydrodynamic and Transport Module - © DHI 
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where K =0.4 is the von Karman constant, a = 0.07 is and empirical constant and &, 

is the distance from the surface where the boundary condition is imposed. At the seabed 
the boundary conditions are 

Atz= -d: 

1 2 

k = ~ u,b 
'\) Cl' 

(2 .34) 

where & b is the distance from the bottom where the boundary condition is imposed. 

Horizontal eddy viscosity 

In many applications a constant eddy viscosity can be used for the horizontal eddy 
viscosity. Alternatively, Smagorinsky (1963) proposed to express sub-grid scale 
transports by an effective eddy viscosity related to a characteristic length scale. The 
subgrid scale eddy viscosity is given by 

(2 .35) 

where Cs is a constant, / is a characteristic length and the deformation rate is given by 

(i,j = 1,2) 

2.1.5 Governing equations in Cartesian and sigma coordinates 

The equations are solved using a vertical a-transformation 

z-z 
<J=~, x'=x, y'=y 

where <J varies between O at the bottom and 1 at the surface. The coordinate 
transformation implies relations such as 

a 1 a 
8z h 8<J 

In this new coordinate system the governing equations are given as 

8h + 8hu + 8hv + 8hw = hS 
at ax' ay' a(j 

The expert in WATER ENVIRONMENTS 
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8hu + 8hu
2 

+ 8hvu + 8hwu = fvh _ gh 817 _ .!!__ 8p0 _ 

8t 8x' 8y' 8a 8x' Po 8x' 

- -- z-- --+- + 1 +- -- + U hg f 11 8p d l ( 8sxx 8sxy J / F a ( v" au ) h S 
Po z ax Po ax cy II aa h aa s 

8hv + 8huv + 8hv
2 

+ 8hwv = _ ji,h _ gh 817 _ .!!__ 8p0 _ 

8t 8x' 8y' 8a ~y' Po ~y' 

hg f 1/ 8p d I ( 8syx 8s>1, J / F a ( v,. 8v) I S - - z-- -+- +1 +- -- +1v 
Po z cy Po 8x cy ,. 8a h 8a " 

ohT 8huT 8hvT 8hwT 
--+--+--+--= 

at ax' 0/ Q(j 

hF +~(D" oT)+hif +hTS 7 oa h 8a s 

8hk 8huk 8hvk 8hwk 
-+--+--+--= 

at ax' 0/ aa 

l 8 [ 111 8k) hFk +-- --- +h(P+B-&) 
h aa (jk aa 

8h& 8hu& 8hv& 8hw& 
-+--+--+--= 

at 8x' 0/ aa 

hF +-- --- +h-(c P+c B-c &) 1 a [ v, a&) & 
" 1 a a k 1

" 
3

" 
2

" 1 a a , a 

8hC + 8huC + 8hvC + 8hwC =hF +~(D,, 8CJ-hk C+hC .S 
at 8x' cy' aa C aa h oa p ' 

The modified vertical velocity is defined by 

The modified vertical velocity is the velocity across a level of constant 
a. The horizontal diffusion terms are defined as 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

hF;, ~ ~ (2hA au)+~ (hA( au + avJJ (2.49) 
ax ax ay ay ax 

10 Hydrodynamic and Transport Module - © DH I 
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hF;, ~ ~ (hA( ou + OVJJ + ~(2hA OVJ ox oy ox oy oy 

The boundary condition at the free surface and at the bottom are given as follows 

At cr=1 : 

OJ = 0, (~,~) = _!y___(rsx,'SJ,) 
ocr ou p0 111 • 

At er =O: 

OJ = 0, (_0!__,~) = _h_('bx, 'by) 
ou ocr Po 111 

The equation for determination of the water depth is not changed by the coordinate 
transformation . Hence, it is identical to Eq. (2 .6) . 

(2 .50) 

(2 .51) 

(2 .52) 

(2 .53) 

2.2 3D Governing Equations in Spherical and Sigma Coordinates 

In spherical coordinates the independent variables are the longitude, /4 , and the latitude, 

~ . The horizontal velocity field (u, v) is defined by 

dJ,., 
u = Rcosrp­

dt 
V= R drp 

dt 

where R is the radius of the earth. 

(2 .54) 

In this coordinate system the governing equations are given as (all superscripts indicating 
the horizontal coordinate in the new coordinate system are dropped in the following for 
notational convenience) 

8h + 1 (ahu + 8hvcosrp] + 8hm = hS 
8t R cos rp 8)., 8rp au 

(2 .55) 

The expert in WATER ENVIRONMENTS 11 
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ahu 1 ( aJni2 ahvu cos ~ J ahmu (I u ,1-,) I -+-- --+--- +--= +-tan'f' v1-
at Rcos~ a;i, a~ aa R 

-- gh-'' +- ra +- -dz+- XX +cos~ X) + 1 [ an 1 an g f ,, ap 1 ( as as . )] 
Rcos~ a;i, Po a;i, Po ' a;i, Po a;i, a~ 

(2 .56) 

a (v· au) hF +- -'--- +hu,S 
II aa h aa 

ahv 1 (ahuv ahv
2 
cos~) ahmv (I u ,1-,) h -+-- --+--~ +--=- +-tan'f' u -

at Rcos~ a,i a~ aa R 

1 [ 1 ary 1 aPc, g f ~ ap d 1 ( 1 as)" as))' )] - g1-+--+- - z+- ----+- + 
R o~ Po o~ Po ' o~ Po cos~ 0,1, o~ 

(2 .57) 

hF +~(~~)+hv S ' ocr h aa ' 

ohT + 1 (ohuT + ohvTcos~J+ ohcoT = 
ot Rcos~ 0,1, o~ oa 

hFr +~(D,. oT)+hfI +hTS 
oa h oa -' 

(2.58) 

ohs + 1 [ ohus + ohvs cos ~ l + ohcos = 
ot Rcos9 oÄ 09 oa 

hF +~(D" ~)+hs S 
" oa h oa -' 

(2 .59) 

1 a ( v, ak J hFk +-- -- +h(P+B-&) 
h aa ak aa 

(2 .60) 

1 a ( v, a& J & hF +-- --- +h-(c P+c B-c &) 0 h aa a & aa k le 
30 20 

(2 .61) 

8hC + 1 [ 8huC + 8hvC cos 9 l + 8hcoC = 
8t Rcos9 8Ä 89 8a 

hF +~(D,, ac)-hk C+hC s 
C aa h aa p s 

(2 .62) 

The modified vertical velocity in spherical coordinates is defined by 

12 Hydrodynam ic and Transport Module - © DHI 
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(2 .63) 

The equation determining the water depth in spherical coordinates is given as 

ah + 1 ( ahu + 8hv cos </JJ = hS 
at R cos </J a--t arp 

(2 .64) 

2.3 2D Governing Equations in Cartesian Coordinates 

2.3.1 Shallow water equations 

Integration of the horizontal momentum equations and the continuity equation over depth 
h = 17 + d the following two-dimensional shallow water equations are obtained 

ah + 8hu + ahv = hS 
at ax ay 

8hu + 8hu
2 

+ 8hvu = foh - gh 8 17 _ .!!___ 8p0 _ 

8t 8x ~JJ 8x Po 8x 

gli 8p + rS.\' _ rb, _ _ 1 ( 8sxx + 8s,y J + 
2po 8x Po Po Po 8x cy 

8 8 
ax (hT"' ) + 

8
Y (hr,J,) + hu,s 

8hv + 8huv + 8hv
2 = _ foh _ gh 8 17 _ .!!___ 8pa _ 

8t 8x 8y cy Po 8y 

gll 8p + r sy _ r by __ 1 (8s y, + 8s)J') + 
2po cy Po Po Po 8x 8y 

! (hT,y) +; (hT>J' ) + hv_, S 

The overbar indicates a depth average value. For example, u and v are the depth­
averaged velocities defined by 

f 
17 

hu= udz , 
- d f 

17 
hv = vdz 

- d 

(2 .65) 

(2 .66) 

(2 .67) 

(2.68) 

The lateral stresses TiJ include viscous friction, turbulent friction and differential 

advection. They are estimated using an eddy viscosity formulation based on of the depth 
average velocity gradients 
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(2 .69) 

2.3.2 Transport equations for salt and temperature 

lntegrating the transport equations for salt and temperature over depth the following two­
dimensional transport equations are obtained 

8hT 8huT 8hvT = hF IH- l T S + + - r+1 +1s at ax ay 
(2.70) 

ahs ahus ahvs hF h 8 -+--+--= .+ s at ax ay ' s 
(2.71) 

where T and s is the depth average temperature and salinity. 

2.3.3 Transport equations for a scalar quantity 

lntegrating the transport equations for a scalar quantity over depth the following two­
dimensional transport equations are obtained 

where C is the depth average scalar quantity. 

(2 .72) 

2.4 2D Governing Equations in Spherical Coordinates 

14 

In spherical coordinates the independent variables are the longitude, A ,and the latitude, ~ 

. The horizontal velocity field (u, v) is defined by 

_ R ,1,d,1, 
u = cos'f'-

dt 
v = R drp 

dt 

where R is the radius of the earth. 

(2 .73) 

In spherical coordinates the governing equation can be written 

ah + 1 ( ahu + ahv cos rft J = 0 
ar R cos rft aÄ arp 

(2.74) 
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(2 .75) 

8hv 1 ( 8huv 8hv
2 

cos rp) (! u "')-i -+-- --+--------'---- =- +-tany, u1 
8t Rcos</J 8,1 8z R 

_ I_[gh 817 _ .!!_ 8p" + gh
2 

8p + _!_(_1 _ 8syx + 8sJi· )J + 
R 8</J Po 8</J 2p0 8</J Po COS <p 8/4 8</J 

(2 .76) 

• .-y r by 8 (! ) 8 (! ) 1 ---+-_: 1T,y +- 1y;
1
, + 1v,S 

Po Po 8x ~y 

ahf + 1 (ahuf + ahvf cos r/JJ = hFr + hH + hTss 
ot R cos rp OA orp 

(2 .77) 

ahs 1 ( ohus ohvs cos rp J- h.F , s -+--- --+----'- - +,1s 
ot R cos rp OA orp s s 

(2 .78) 

ohC + 1 (ohuC + ohvC cos rpJ = hF -hk C + hC S 
a, R cos rp oA arp c p , 

(2 .79) 

2.5 Bottom Stress 

The bottom stress, ib = ( r bx, r by ), is determined by a quadratic friction law 

(2 .80) 

where cf is the drag coefficient and Üb = (ub , vh) is the flow velocity above the bottom. 

The friction velocity associated with the bottom stress is given by 

(2 .81) 

For two-dimensional calculations üh is the depth-average velocity and the drag coefficient 

can be determined from the Chezy number, C , or the Manning number, M 

C _ _K_ 
r - c2 (2 .82) 
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C = g 
f (Mhl /6 )2 (2 .83) 

For three-dimensional calculations ü b is the velocity at a distance ~b above the sea 

bed and the drag coefficient is determined by assuming a logarithmic profile between the 

seabed and a point ~h above the seabed 

1 

where K =0.4 is the von Karman constant and z 0 is the bed roughness length scale. 

When the boundary surface is rough, z 0 , depends on the roughness height, k, 

where m is approximately 1/30. 

(2 .84) 

(2 .85) 

Note, that the Manning number can be estimated from the bed roughness length using 
the following 

M = 25.4 
kl /6 

s 

The wave induced bed resistance can be determined from 

where U,c is the friction velocity calculated by considering the conditions in the wave 
boundary layer. For a detailed description of the wave induced bed resistance, see 
Freds0e (1984) and Jones et.al. (2014). 

(2 .86) 

(2 .87) 

2. 6 Wind Stress 

16 

In areas not covered by ice the surface stress, r = (r , r ,) , is determined by the winds 
S S.\ S) 

above the surface. The stress is given by the following empirical relation 

(2 .88) 

where Pa is the density of air, c" is the drag coefficient of air, and ü"' = (u"', 1\ ,,) is the 

wind speed 10 m above the sea surface. The friction velocity associated with the surface 
stress is given by 
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(2 .89) 

The drag coefficient can either be a constant value or depend on the wind speed. The 
empirical formula proposed by Wu (1980, 1994) is used for the parameterisation of the 
drag coefficient. 

ca 

C_r = (2.90) 

where Ca, cb, Wa and wb are empirical factors and w 10 is the wind velocity 10 m above the 
sea surface. The default values for the empirical factors are Ca= 1.255· 10-3, cb = 2.425 · 10-
3, Wa = 7 m/s and wb = 25 m/s. These give generally good results for open sea 
applications. Field measurements of the drag coefficient collected over lakes indicate that 
the drag coefficient is larger than open ocean data. Fora detailed description of the drag 
coefficient see Geernaert and Plant (1990). 

2. 7 lce Coverage 

lt is possible to take into account the effects of ice coverage on the flow field . 

In areas where the sea is covered by ice the wind stress is excluded. lnstead, the surface 

stress is caused by the ice roughness. The surface stress, f
5 

= ( rsx, r .IJ' ) , is determined 

by a quadratic friction law 

(2 .91) 

where cf is the drag coefficient and Ü
5 

= (u
5

, vJ is the flow velocity below the surface. 

The friction velocity associated with the surface stress is given by 

(2 .92) 

For two-dimensional calculations Ü
5 

is the depth-average velocity and the drag coefficient 

can be determined from the Manning number, M 

C - g 
_( - (Mh l/6 )2 (2 .93) 

The Manning number is estimated from the bed roughness length using the following 
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M = 25.4 
k116 

s 

(2 .94) 

For three-dimensional calculations ii s is the velocity at a distance !).z s below the surface 

and the drag coefficient is determined by assuming a logarithmic profile between the 

surface and a point !).zb below the surface 

1 

where K =0.4 is the von Karman constant and z 0 is the bed roughness length scale. 

When the boundary surface is rough, z 0 , depends on the roughness height, k„ 

where m is approximately 1/30. 

(2 .95) 

(2 .96) 

2.8 Tidal Potential 

18 

The tidal potential is a force, generated by the variations in gravity due to the relative 
motion of the earth , the moon and the sun that act throughout the computational domain. 
The forcing is expanded in frequency space and the potential considered as the sum of a 
number of terms each representing different tidal constituents . The forcing is implemented 
as a so-called equilibrium tide, which can be seen as the elevation that theoretically would 
occur, provided the earth was covered with water. The forcing enters the momentum 
equations (e.g. (2.66) or (2. 75)) as an additional term representing the gradient of the 
equilibrium tidal elevations, such that the elevation '7 can be seen as the sum of the actual 
elevation and the equilibrium tidal potential. 

'lJ = 'lJ ACTUA L + '!Jr 

The equilibrium tidal potential '7r is given as 

'!Jr = L e;HJ;L; cos(2n ; + b; + i0x ) 
1 i 

(2 .97) 

(2 .98) 

where '7r is the equilibrium tidal potential, i refers to constituent number (note that the 
constituents here are numbered sequentially), e; is a correction for earth tides based an 
Love numbers, H; is the amplitude, f; is a nodal factor, L; is given below, t is time, T; is the 
period of the constituent, b; is the phase and x is the longitude of the actual position. 

The phase b is based an the motion of the moon and the sun relative to the earth and can 
be given by 

(2 .99) 
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where io is the species, i1 to i5 are Doodson numbers, u is a nodal modulation factor (see 
Table 2.3) and the astronomical arguments s, h, p, N and Ps are given in Table 2.2. 

Table 2.2 Astronomical arguments (Pugh , 1987) 

Mean longitude of the moon s 277.02+481267.89T +0.0011T2 

Mean longitude of the sun h 280.19+36000. 77T +0.0003T2 

Longitude of lunar perigee p 334.39+4069.04T-0.0103T2 

Longitude of lunar ascending node N 259.16-1934.14T +0.0021T2 

Longitude of perihelion Ps 281.22+1 . 72T +0.0005T2 

In Table 2.2 the time, T, is in Julian century from January 1 1900 UTC, thus T = (365(y-
1900) + (d- 1) + 1)/36525 and i = int (y-1901 )/4) , y is year and d is day number 

L depends on species number i0 and latitude y as 

i0 = 0 

i0 = 1 

i0 = 2 

L = 3sin2 (y)-l 

L = sin(2y) 

L = cos2 (y) 

The nodal factor f; represents modulations to the harmonic analysis and can for some 
constituents be given as shown in Table 2.3. 

Tab le 2.3 Nodal modulation terms (Pugh , 1987) 

f; U; 

Mm 1.000 - 0.130 cos(N) 0 

M1 1.043 + 0.414 cos(N) -23.7 sin(N) 

O1 ,O1 1.009 + 0.187 cos(N) 10.8 sin(N) 

K1 1.006 + 0.115 cos(N) -8.9 sin(N) 

2N2, µ2, V2, N2, M2 1.000 - 0.037 cos(N) -2.1 sin(N) 

K2 1.024 + 0.286 cos(N) -17.7 sin(N) 

2.9 Wave Radiation 

The second order stresses due to breaking of short period waves can be included in the 
simulation. The radiation stresses act as driving forces for the mean flow and can be used 
to calculate wave induced flow. For 30 simulations a simple approach is used. Here a 
uniform variation is used for the vertical variation in radiation stress. 
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2.10 Heat Exchange 

The heat exchange with the atmosphere is calculated on basis of the four physical 
processes 

Latent heat flux (or the heat loss due to vaporisation) 
Sensible heat flux (or the heat flux due to convection) 
Net short wave radiation 
Net long wave radiation 

Latent and sensible heat fluxes and long-wave radiation are assumed to occur at the 
surface. The absorption profile for the short-wave flux is approximated using Beer's law. 
The attenuation of the light intensity is described through the modified Beer's law as 

(2. 100) 

where I ( d) is the intensity at depth d below the surface; I O is the intensity just below the 

water surface; ß is a quantity that takes into account that a fraction of light energy (the 

infrared) is absorbed near the surface; A is the light extinction coefficient. Typical values 

for ß and Aare 0.2-0.6 and 0.5-1.4 m- 1
, respectively. ß and Aare user-specified 

constants. The default values are ß = 0.3 and Ä = 1.0 m - 1
. The fraction of the light 

energy that is absorbed near the surface is ßl O . The net short-wave radiation , q sr,net, is 

attenuated as described by the modified Beer's law. Hence the surface net heat flux is 
given by 

For three-dimensional calculations the source term H is given by 

-Ä(l) - Z) 

H = ~[qsr,net(l- ß)e -Ä( q-z) J = qsr,nei{l- ß)e A 

az PoCp PoCp 

For two-dimensional calculations the source term His given by 

~ qv +qc +qsr nel+qlrnet H= , , 
Po Cp 

(2.101) 

(2.102) 

(2 .103) 

The calculation of the latent heat flux, sensible heat flux, net short wave radiation, and net 
long wave radiation as described in the following sections. 

In areas covered by ice the heat exchange is excluded . 

2.10.1 Vaporisation 

20 

Dalton's law yields the following relationship for the vaporative heat loss (or latent flux), 
see Sahlberg, 1984 
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(2 .104) 

where L = 2.5 • 106 J / kg is the latent heat vaporisation (in the literature 

L = 2.5 -106 
- 2300 T,,,a,e, is commonly used); Ce = 1.32 · l 0 -3 is the moisture transfer 

coefficient (or Dalton number) ; W2111 is the wind speed 2 m above the sea surface; Q ll'aler 

is the water vapour density close to the surface; Q air is the water vapour density in the 

atmosphere; a1 and b1 are user specified constants. The default values are a1 = 0.5 

and b1 = 0.9. 

Measurements of Qll'aler and Q air are not directly available but the vapour density can 

be related to the vapour pressure as 

Q. = 0.2 167 e 
I T I 

i +Tk 
(2.105) 

in which subscript i refers to both water and air. The vapour pressure close to the sea, 

e ll'ater , can be expressed in terms of the water temperature assuming that the air close to 

the surface is saturated and has the same temperature as the water 

e water =6.lleK(_l _ _ _ 1 __ ) 
Tk ~,•ater + Tk 

(2 .106) 

where K = 5418 ° K and TK = 273.15 ° K is the temperature at 0 C. Similarly the 

vapour pressure of the air, eair, can be expressed in terms of the air temperature and the 

relative humidity, R 

(2 .107) 

Replacing Q ll'ater and Q air with these expressions the latent heat can be written as 

q,, = -P,, (a. + h1W2111) · 

exp(K(J_ - 1 )] 
½ T,, ,arer + ½ 

R. exp(K(J_ - 1 )] 
Tk T;,;,. + Tk (2 .108) 

T..-ater + ½ 

where all constants have been included in a new latent constant P.,, = 4370 J · ° K I m 3
. 

Du ring cooling of the surface the latent heat lass has a major effect with typical values up 
to 100 W/m2

. 
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The wind speed, W 2, 2 m above the sea surface is calculated from the from the wind 
speed, W 10, 10 m above the sea surface using the following formula: 

Assuming a logarithmic profile the wind speed, u(z), at a distance z above the sea surface 
is given by 

u(z) = u. log(_:_] 
K Z

0 

where u. is the wind friction velocity, z0 is the sea roughness and K =0.4 is von 

Karman's constant. u. and z0 are given by 

(2 .109) 

(2 .110) 

(2 .111) 

where Z C/,amock is the Charnock parameter. The default value is ZC/,amock = 0.014. The 

wind speed, W2, 2 m above the sea surface is then calculated from the from the wind 
speed, W10, 1 Om above the sea surface by first solving Eq. (2 .114) and Eq. (2.115) 
iteratively for z0 with z=10m and u(z)=W10. Then W2 is given by 

log( tJ 
W2 = Wio (lOJ log -

Zo 

W10 > 0.5ml s 
(2 .112) 

Wio :s; 0.5ml s 

The heat loss due to vaporization occurs both by wind driven forced convection by and 
free convection . The effect of free convection is taken into account by the parameter a1 in 
Eq. (2 .104 ). The free convection is also taken into account by introducing a critical wind 
speed Wcntical so that the wind speed used in Eq. (2.112) is obtained as 
W10=max(W1o, Wcnuca1) . The default value for the critical wind speed is 2 m/s. 

2.10.2 Convection 

22 

The sensible heat flux, q c (W In/) , ( or the heat flux due to convection) depends on the 

type of boundary layer between the sea surface and the atmosphere. Generally this 
boundary layer is turbulent implying the following relationship 

Tair ~ T 

Tair < T 
(2.113) 
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where Pair is the air density 1.225 kg/m3; c
0

;,. = 1007 J /(kg·° K) is the specific heat of 

air; cheating = 0.0011 and ccooling = 0.0011, respectively, is the sensible transfer 

coefficient (or Stanton number) for heating and cooling (see Kantha and Clayson, 2000) ; 

W10 is the wind speed 10 m above the sea surface; Twater is the temperature at the sea 

surface; T
0

;,. is the temperature of the air. 

The convective heat flux typically varies between 0 and 100 W/m2
. 

The heat loss due to convection occurs both by wind driven forced convection by and free 
convection . The free convection is taken into account by introducing a critical wind speed 
Wcntical so that the wind speed used in Eq. (2.113) is obtained as W10=max(W10, Wcntica1) . 
The default value for the critical wind speed is 2 m/s. 

2.10.3 Short wave radiation 

Radiation from the sun consists of electromagnetic waves with wave lengths varying from 
1,000 to 30,000 A. Most of this is absorbed in the ozone layer, leaving only a fraction of 
the energy to reach the surface of the Earth . Furthermore, the spectrum changes when 
sunrays pass through the atmosphere. Most of the infra red and ultraviolet compound is 
absorbed such that the solar radiation on the Earth mainly consists of light with wave 
lengths between 4,000 and 9,000 A. This radiation is normally termed short wave 
radiation . The intensity depends on the distance to the sun, declination angle and latitude, 
extraterrestrial radiation and the cloudiness and amount of water vapour in the 
atmosphere (see lqbal , 1983) 

The eccentricity in the solar orbit, E0 , is given by 

E0 ~ ( r; )' ~ 1.000110 + 0.034221 cos(l) + 0.001280sin(l) 

+ 0.000719cos(2r) + 0.000077 sin(2r) 

where r0 is the mean distance to the sun, r is the actual distance and the day angle 

r (rad) is defined by 

r = 2rc(d11 -1) 
365 

and d
11 

is the Julian day of the year. 

(2.114) 

(2.115) 

The daily rotation of the Earth around the polar axes contributes to changes in the solar 
radiation . The seasonal radiation is governed by the declination angle, 5 (rad), which 

can be expressed by 

ö = 0.006918-0.3999] 2cos(r) + 0.07257 sin(r)-

0.006758cos(2r) + 0.000907 sin(2r)-

0.002697 cos(3r) + 0.00148 sin(3r) 
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The day length, nd, varies with ö . Fora given latitude, ~, (positive on the northern 

hemisphere) the day length is given by 

24 
nd = -arccos(-tan(~)tan(ö)) 

7r 

and the sunrise angle, OJ sr (rad) , and the sunset angle OJ ss (rad) are 

ms,. = arccos (- tan(,p)tan(8)) and m.u = -m.,.,. 

(2 .117) 

(2 .118) 

The intensity of short wave radiation on the surface parallel to the surface of the Earth 
changes with the angle of incidence. The highest intensity is in zenith and the lowest 
during sunrise and sunset. lntegrated over one day the extraterrestrial intensity, 

H O (MJ / m2 
/ day), in short wave radiation on the surface can be derived as 

H 0 = 
24 

qscEo cos(~)cos(öXsin(w,,.)-w.,,. cos(w,,.)) 
7r 

where qsc = 4.9212 (MJ I m 2 I h) is the solar constant. 

(2 .119) 

For determination of daily radiation under cloudy skies, H (MJ / m 2 
/ day) , the following 

relation is used 

(2 .120) 

in which n is the number of sunshine hours and nd is the maximum number of sunshine 

hours. a2 and b2 are user specified constants. The default values are a2 = 0.295 and 

b2 = 0.371 . The user-specified clearness coefficient corresponds to n / nd . Thus the 

solar radiation, qs (W I nl), can be expressed as 

( 
H J 10

6 

q, = Ho % (a3 +b3 cos(w,)) 
3600 

(2 .121) 

where 

(2 .122) 

b3 = 0.6609 + 0.4 767 sin( OJ sr - ; ) (2 .123) 

The extraterrestrial intensity, % (MJ / m 2 
/ h) and the hour angle OJ; is given by 
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(2 .124) 

OJ; =~(l2+/'t.tdisp/ace 111ent +_i_(Ls -L E)-!!:.J_-t/oca/) 
12 60 60 

(2 .125) 

/'t.tdisplacement is the displacement hours due to summer time and the time meridian L8 is 

the Standard longitude for the time zone. !1tdisplace111ent and Ls are user specified 

constants. The default values are Mdisptacement = 0 (h) and L s = 0 (deg) . L E is the 

local longitude in degrees. E1 (s) is the discrepancy in time due to solar orbit and is 

varying during the year. lt is given by 

(
0.000075+0.001868 cos(r) - 0.032077 sin(r)) 

E, = -229.18 
- 0.014615cos(2r) - 0.04089sin(2r) 

(2 .126) 

Finally, t,acal is the local time in hours. 

Solar radiation that impinges on the sea surface does not all penetrate the water surface. 
Parts are reflected back and are lost unless they are backscattered from the surrounding 
atmosphere. This reflection of solar energy is termed the albedo. The amount of energy, 
which is lost due to albedo, depends on the angle of incidence and angle of refraction . For 
a smooth sea the reflection can be expressed as 

(2 .127) 

where i is the angle of incidence, r the refraction angle and a the reflection coefficient, 
which typically varies from 5 to 40 %. a can be approximated using 

a= 

altitude 0.48 
5 

altitude < 5 

30- altitude (0.48- 0.05) 5 :-:::; altitude :-:::; 30 
25 

0.05 altitude > 30 

where the altitude in degrees is given by 

altitude = 90 -(1 !0 
arccos(sin(ö)sin(~) + cos(ö) cos(~)cos(w; )) ) 

Thus the net short wave radiation , qs,ne, (W I n/), can possibly be expressed as 

qvr,11e/ = ( 1 - a) q, 

(2 .128) 

(2 .129) 

(2 .130) 
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The net short wave radiation, qsr,net, can be calculated using empirical formulae as 
described above. Alternatively, the net short wave radiation can be calculated using Eq. 
(2.130) where the solar radiation, qs , is specified by the user or the net short wave 
radiation, qsr,net, can be given by the user. 

2.10.4 Long wave radiation 

26 

A body or a surface emits electromagnetic energy at all wavelengths of the spectrum. The 
long wave radiation consists of waves with wavelengths between 9,000 and 25,000 A. 
The radiation in this interval is termed infrared radiation and is emitted from the 
atmosphere and the sea surface. The long wave emittance from the surface to the 
atmosphere minus the long wave radiation from the atmosphere to the sea surface is 
called the net long wave radiation and is dependent on the cloudiness, the air 
temperature, the vapour pressure in the air and the relative humidity. The net outgoing 

long wave radiation , q1,. ,net (W / m2
), is given by Brunt's equation (See Lind and 

Falkenmark, 1972) 

(2 .131) 

where ed is the vapour pressure at dew point temperature measured in mb; n is the 

number of sunshine hours, nd is the maximum number of sunshine hours; 

asb = 5.6697 · 10-8 W l(ni · ° K 4
) is Stefan Boltzman's constant; T

0
;,. (°C) is the air 

temperature. The coefficients a, b, c and d are given as 

a = 0.56;b = 0.077mb-½; c = 0.I0;d = .90 (2.132) 

The vapour pressure is determined as 

ed = 10 · R esaturated (2 .133) 

where R is the relative humidity and the saturated vapour pressure, e saturated (kPa) , with 

100 % relative humidity in the interval from - 51 to 52 °C can be estimated by 

e ,arumtcd = 3.38639 . 

((7.38 ·10-3 ·Ta;, +0.8072)8 -1.9 · 10-5 11.8 •1',,;, +481+1.316 · 10-3
) 

The net long wave radiation, q,r,net, can be calculated using empirical formulae as 
described above. Alternatively, the net long wave radiation can be calculated as 

(2 .134) 

(2 .135) 

where the net incident atmospheric radiation, qar,net, is specified by the user and the back 
radiation, qbr, is given by 

qbr = (l- r)W ,bT; (2 .136) 
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where r=0 .03 is the reflection coefficient and e:=0.985 is the emissivity factor of the 
atmosphere. The net long wave radiation can also be specified by the user. 
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3 Numerical Solution 

3.1 Spatial Discretization 

The discretization in solution domain is performed using a finite volume method. The 
spatial domain is discretized by subdivision of the continuum into non-overlapping 
cells/elements. 

In the two-dimensional case the elements can be arbitrarily shaped polygons, however, 
here only triangles and quadrilateral elements are considered. 

In the three-dimensional case a layered mesh is used: in the horizontal domain an 
unstructured mesh is used while in the vertical domain a structured mesh is used (see 
Figure 3.1 ). The vertical mesh is based on either sigma coordinates or combined sigma/z­
level coordinates. For the hybrid sigma/z-level mesh sigma coordinates are used from the 
free surface to a specified depth and z-level coordinates are used below. The different 
types of vertical mesh are illustrated in Figure 3.2. The elements in the sigma domain and 
the z-level domain can be prisms with either a 3-sided or 4-sided polygonal base. Hence, 
the horizontal faces are either triangles or quadrilateral element. The elements are 
perfectly vertical and all layers have identical topology. 

Figure 3.1 Principle of meshing for the three-dimensional case 
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Illustrations of the different vertical grids . Upper: sigma mesh, Lower: combined 
sigma/z-level mesh with simple bathymetry adjustment. The red line shows the 
interface between the z-level domain and the sigma-level domain 

The most important advantage using sigma coordinates is their ability to accurately 
represent the bathymetry and provide consistent resolution near the bed. However, sigma 
coordinates can suffer from significant errors in the horizontal pressure gradients, 
advection and mixing terms in areas with sharp topographic changes (steep slopes) . 
These errors can give rise to unrealistic flows. 

The use of z-level coordinates allows a simple calculation of the horizontal pressure 
gradients, advection and mixing terms, but the disadvantages are their inaccuracy in 
representing the bathymetry and that the stair-step representation of the bathymetry can 
result in unrealistic flow velocities near the bottom. 
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3.1.1 Vertical Mesh 

Sigma 

For the vertical discretization both a standard sigma mesh and a combined sigma/z-level 
mesh can be used. For the hybrid sigma/z-level mesh sigma coordinates are used from 
the free surface to a specified depth , z0 , and z-level coordinates are used below. At least 
one sigma layer is needed to allow changes in the surface elevation . 

In the sigma domain a constant number of layers, N0 , are used and each sigma layer is a 
fixed fraction of the total depth of the sigma layer, h0 , where hu = 17 - max(zb, Zu) . The 
discretization in the sigma domain is given by a number of discrete a-levels {a-i, i = 
1, (Nu + 1)}. Here a varies from a1 = 0 at the bottom interface of the lowest sigma layer 
to aN +1 = 1 at the free surface. 

(I 

Variable sigma coordinates can be obtained using a discrete formulation of the general 
vertical coordinate (s-coordinate) system proposed by Song and Haidvogel (1994). First 
an equidistant discretization in a s-coordinate system (-1$ s $0) is defined 

i = 1, (Nu+ 1) (3 .1) 

The discrete sigma coordinates can then be determined by 

(3 .2) 

where 

sinh(es) tanh ( 0 ( s + ½) )- tanh(;) 
c(s) = (1 - b) , h(e) + b 0 

Sill 2tanh(z) 

(3.3) 

Here Oe is a weighting factor between the equidistant distribution and the stretch 
distribution, 0 is the surface control parameter and b is the bottom control parameter. The 
range for the weighting factor is 0<oe$1 where the value 1 corresponds to equidistant 
distribution and O corresponds to stretched distribution . A small value of Oe can result in 
linear instability. The range of the surface control parameter is 0<0$20 and the range of 
the bottom control parameter is 0$b$1 . lf 0«1 and b=0 an equidistant vertical resolution 
is obtained. By increasing the value of the 0, the highest resolution is achieved near the 
surface. lf 0>0 and b=1 a high resolution is obtained both near the surface and near the 
bottom. 

Examples of a mesh using variable vertical discretization are shown in Figure 3.3 and 
Figure 3.4. 
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Combined sigma/z-level 

32 

In the z-level domain the discretization is given by a number of discrete z-levels {zi, i = 
1, (Nz + 1)}, where Nz is the number of layers in the z-level domain. z1 is the minimum z­
level and zN

2
+1 is the maximum z-level, which is equal to the sigma depth, z,,. The 

corresponding layer thickness is given by 

(3.4) 

The discretization is illustrated in Figure 3.5 and Figure 3.6. 

Using standard z-level discretization the bottom depth is rounded to the nearest z-level. 
Hence, for a cell in the horizontal mesh with the cell-averaged depth, Zb, the cells in the 
corresponding column in the z-domain are included if the following criteria is satisfied 
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(3.5) 

The cell-averaged depth, Zb, is calculated as the mean value of the depth at the vortices 
of each cell. For the standard z-level discretization the minimum depth is given by z1. Too 
take into account the correct depth for the case where the bottom depth is below the 
minimum z-level (z1 > zb) a bottom fitted approach is used . Here, a correction factor, fi, 
for the layer thickness in the bottom cell is introduced. The correction factor is used in the 
calculation of the volume and face integrals. The correction factor for the bottom cell is 
calculated by 

The corrected layer thickness is given by Llz{ = /1 Llz1 . The simple bathymetry 
adjustment approach is illustrated in Figure 3.5. 

(3 .6) 

Fora more accurate representation of the bottom depth an advanced bathymetry 
adjustment approach can be used. Fora cell in the horizontal mesh with the cell -averaged 
depth, Zb, the cells in the corresponding column in the z-domain are included if the 
following criteria is satisfied 

i = 1, N2 
(3 .7) 

A correction factor, f; , is introduced for the layer thickness 

(3.8) 

A minimum layer thickness, Llzmin, is introduced to avoid very small values of the 
correction factor. The correction factor is used in the calculation of the volume and face 
integrals. The corrected layer thicknesses are given by {Llz1 = fJ::.zi, i = 1, N2 }. The 
advanced bathymetry adjustment approach is illustrated in Figure 3.6. 

z=O 
z=z0 

8z3 

z=z3 

8z2 

z=z2 

8z1 

z=z1 

Figure 3.5 Simple bathymetry adjustment approach 
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Figure 3.6 Advanced bathymetry adjustment approach 

3.1.2 Shal low water equations 

34 

The integral form of the system of shallow water equations can in general form be written 

au -+ V-F(U) =S(U) 
ar 

where U is the vector of conserved variables, Fis the flux vector function and S is the 
vector of source terms. 

In Cartesian coordinates the system of 2D shallow water equations can be written 

(3.9) 

( / JI ) ( / V) au a F, - F, a ~, - ~, 
-+----'---~+----'---~=S (3.10) 
at ax ay 

where the superscripts / and V denote the inviscid (convective) and viscous fluxes, 
respectively and where 
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u ~l:~ J 
hv 

hu 0 

F,l = - 1 F"= hA(2 au) hu 2 +-g(h2 -d 2
) , 

2 X ax 
huv hA( au+ av) 

8y ax 

0 
hv 

~ '/ = hvu , F"= hA( au+ OVJ y 
8y ax 

- 7 1 2 2 hv - + - g ( h - d ) 
hA( 2 :) 2 a 

0 

gry od + foh _ !!_ 8p0 _ gh
2 

op __ 1 ( osxx + osxy) 
8x Po ox 2p0 8x Po ox 8y 

S= T. Th . h + ~ - _ ., + u_,. 
Po Po 

gry od _ fiih-!!_ opa _ gh
2 

op __ 1 ( osyx + osyy ) 
8y Po oy 2p0 oy Po 8x 8y 

Tsy Tby 
+---+hvs 

Po Po 

In Cartesian coordinates the system of 30 shallow water equations can be written 

au aF1 oF; aF1 aF" aF'.' aF" -+-·-'+->-+--u+--'- +_>_+_u_=S 
at ox' ay' aa- ax ~Y aa-

where the superscripts / and V denote the inviscid (convective) and viscous fluxes, 
respectively and where 

(3 .11) 

(3 .12) 
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hu O 

F/ = hu
2 

+½g(h
2 
-d

2
) , F/1 = hA( 2 ::) 

huv 

r

hv 7 
F/ = hvu , 

hv2 +½ g(h 2 -d 2
) 

l
hw 1 / V F = hwu F = 

cr ' cr 

hwv 

0 

0 

!J._ au 
h acr 
v, av 
h acr 

hA(au + avJ 
ay ax 

0 

F/ = hA(au + avJ 
ay ax 

hA( 2 :;) 

S -_ ad h h h apa hg f „ ap d 1 ( as'" asX)' J h g77-+ J'J ----- - z-- _._. +--· + US 
ax Po ax' Po z ax Po ax ~V 

gry ad_ fuh-!!__ ap~ _ hg f „ ap dz- _1 ( asyx + as>'.v J + hv, 
ay Po ay Po ' ay Po ax ay 

(3 .13) 

lntegrating Eq. (3.9) over the ith cell and using Gauss's theorem to rewrite the flux integral 
gives 

f audn+f (F·n)ds=f S(U)dQ 
~ fü G ~ 

(3.14) 

where A; is the area/volume of the cell Q is the integration variable defined on A; , f; 
is the boundary of the ith cell and ds is the integration variable along the boundary. n is 
the unit outward normal vector along the boundary. Evaluating the area/volume integrals 
by a one-point quadrature rule, the quadrature point being the centroid of the cell, and 
evaluating the boundary intergral using a mid-point quadrature rule, Eq. (3 .14) can be 
written 
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(3 .15) 

Here U; and S;, respectively, are average values of u and S over the ith cell and stored 

at the cell centre , NS is the number of sides of the cell , nJ is the unit outward normal 

vector at the jth side and ~rJ the length/area of the jth interface. 

Both a first order and a second order scheme can be applied for the spatial discretization. 

For the 20 case an approximate Riemann solver (Roe's scheme, see Roe, 1981) is used 
to calculate the convective fluxes at the interface of the cells. Using the Roe's scheme the 
dependent variables to the left and to the right of an interface have to be estimated. 
Second-order spatial accuracy is achieved by employing a linear gradient-reconstruction 
technique. The average gradients are estimated using the approach by Jawahar and 
Kamath , 2000. To avoid numerical oscillations a second order TVO slope limiter (Van 
Leer limiter, see Hirch, 1990 and Oarwish, 2003) is used. 

For the 30 case an approximate Riemann solver (Roe's scheme, see Roe, 1981) is used 
to calculate the convective fluxes at the vertical interface of the cells (x'y' -plane). Using 
the Roe's scheme the dependent variables to the left and to the right of an interface have 
tobe estimated. Second-order spatial accuracy is achieved by employing a linear 
gradient-reconstruction technique. The average gradients are estimated using the 
approach by Jawahar and Kamath , 2000. To avoid numerical oscillations a second order 
TVO slope limiter (Van Leer limiter, see Hirch, 1990 and Oarwish , 2003) is used. The 
convective fluxes at the horizontal interfaces (vertical line) are derived using first order 
upwinding for the low order scheme. For the higher order scheme the fluxes are 
approximated by the mean value of the fluxes calculated based on the cell values above 
and below the interface for the higher order scheme. 

3.1.3 Transport equations 

The transport equations arise in the salt and temperature model, the turbulence model 
and the generic transport model. They all share the form of Equation Eq. (2.20) in 
Cartesian coordinates. For the 20 case the integral form of the transport equation can be 
given by Eq. (3 .9) where 

U=hC 

F' = [huC, hvC] 

F " =[hD ac hD ac] 
" ax' " 01 

For the 30 case the integral form of the transport equation can be given by Eq . (3 .9) 
where 
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(3.17) 

The discrete finite volume form of the transport equation is given by Eq. (3.15) . As for the 
shallow water equations both a first order and a second order scheme can be applied for 
the spatial discretization. 

In 2D the low order approximation uses simple first order upwinding, i.e., element 
average values in the upwinding direction are used as values at the boundaries. The 
higher order version approximates gradients to obtain second order accurate values at 
the boundaries. Values in the upwinding direction are used. To provide stability and 
minimize oscillatory effects, a TVD-MUSCL limiter is applied (see Hirch, 1990, and 
Darwish, 2003). 

In 3D the low order version uses simple first order upwinding. The higher order version 
approximates horizontal gradients to obtain second order accurate values at the 
horizontal boundaries. Values in the upwinding direction are used . To provide stability and 
minimize oscillatory effects, an ENO (Essentially Non-Oscillatory) type procedure is 
applied to limit the horizontal gradients. In the vertical direction a 3rd order ENO procedure 
is used to obtain the vertical face values (Shu, 1997). 

3.2 Time Integration 

38 

Consider the general form of the equations 

au =G(u) 
at (3 .18) 

For 2D simulations, there are two methods of time integration for both the shallow water 
equations and the transport equations: A low order method and a higher order method. 
The low order method is a first order explicit Euler method 

U11+1 = U11 + 11t G(U11 ) (3 .19) 

where M is the time step interval. The higher order method uses a second order Runge 
Kutta method on the form: 

U
11

+1 = U11 + ½M G(U,,) 
2 

U11+1 = u,, + 11t G(U
11

+1 ) 
2 

(3 .20) 
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For 30 simulations the time integration is semi-implicit. The horizontal terms are treated 
implicitly and the vertical terms are treated implicitly or partly explicitly and partly implicitly. 
Consider the equations in the general semi-implicit form. 

au 1 " - = G1,(U) + Gv(BU) = G1, (U) + Gv (U) + Gv (U) 
Bt 

(3 .21) 

where the h and v subscripts refer to horizontal and vertical terms, respectively, and the 
superscripts refer to invicid and viscous terms, respectively. As for 20 simulations, there 
is a lower order and a higher order time integration method. 

The low order method used for the 30 shallow water equations can written as 

(3 .22) 

The horizontal terms are integrated using a first order explicit Euler method and the 
vertical terms using a second order implicit trapezoidal rule. The higher order method can 
be written 

U,,+J/2 -¾M (Gv(Un+lj2 )+G,, (U11 ))=U11 + ½M G1,(U11 ) 

u n+I - ½ llt ( G,, ( u n+I) + Gv ( u/1)) = U,, + llt GI, ( ull+ 1/2) 
(3.23) 

The horizontal terms are integrated using a second order Runge Kutta method and the 
vertical terms using a second order implicit trapezoidal rule. 

The low order method used for the 30 transport equation can written as 

J ( V V )- I U,,+1 -2M G,, (U,,+1) +Gv (U/1) - u/1 + llt G1,(UII) + llt Gv (U,,) (3 .24) 

The horizontal terms and the vertical convective terms are integrated using a first order 
explicit Euler method and the vertical viscous terms are integrated using a second order 
implicit trapezoidal rule. The higher order method can be written 

1 ( J/ V )-Un+l/2 -4M Gv (U11+J/2)+G,, (U,,) -

U,, +½11t G1,(Ull )+½M G;,(U/1) 

U,,+1 - ½ 11t ( G:: (U,,+1) + G:: (U,,)) = 

U,, + M G1,(U,,+v2 ) + !1t G,~ (U,,+112 ) 

(3 .25) 

The horizontal terms and the vertical convective terms are integrated using a second 
order Runge Kutta method and the vertical terms are integrated using a second order 
implicit trapezoidal rule for the vertical terms. 
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3.3 Boundary Conditions 

3.3.1 Closed boundaries 

Along closed boundaries (land boundaries), normal fluxes are forced to zero for all 
variables. For the momentum equations, this leads to full-slip along land boundaries. For 
the shallow water equations, the no slip condition can also be applied where both the 
normal and tangential velocity components are zero . 

3.3.2 Open boundaries 

For the shallow water equations a number of different boundary conditions can be applied 

The flux, velocity and Flather boundary conditions are all imposed using a weak 
appreach. A ghost cell technique is applied where the primitive variables in the ghost cell 
are specified . The water level is evaluated based on the value of the adjacent interior cell , 
and the velocities are evaluated based on the boundary information. Fora discharge 
boundary, the transverse velocity is set to zero for inflow and passively advected for 
outflow. The boundary flux is then calculated using an approximate Riemann solver. 

The Flather (1976) condition is one of the most efficient open boundary conditions . lt is 
very efficient in connection with downscaling coarse model simulations to local areas (see 
Oddo and Pinardi (2007)). The instabilities, which are often observed when imposing 
stratified density at a water level boundary, can be avoided using Flather conditions 

The level boundary is imposed using a streng appreach based on the characteristic 
theory (see e.g. Sleigh et al. , 1998). 

The discharge boundary condition is imposed using both a weak formulation using ghost 
cell technique described above and a streng appreach based on the characteristic theory 
(see e.g. Sleigh et al., 1998). 

Note that using the weak formulation for a discharge boundary the effective discharge 
over the boundary may deviate from the specified discharge. 

For transport equations, either a specified value or a zere gradient can be given . For 
specified values, the boundary conditions are imposed by applying the specified 
concentrations for calculation of the boundary flux. For a zere gradient condition, the 
concentration at the boundary is assumed to be identical to the concentration at the 
adjacent interior cell. 

3.3.3 Flooding and drying 

40 

The appreach for treatment of the moving boundaries problem (flooding and drying fronts) 
is based on the work by Zhao et al. (1994) and Sleigh et al. (1998). When the depths are 
small the problem is reformulated and only when the depths are very small the 
elements/cells are removed from the calculation . The reformulation is made by setting the 
momentum fluxes to zero and only taking the mass fluxes into consideration . 

The depth in each element/cell is monitored and the elements are classified as dry, 
partially dry or wet. Also the element faces are monitored to identify flooded boundaries. 
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An element face is defined as flooded if the following two criteria are satisfied: Firstly, 

the water depth at one side of face must be less than a tolerance depth, h c1,y , and 

the water depth at the other side of the face !arger than a tolerance depth , h flaac1 · 

Secondly, the sum of the still water depth at the side for which the water depth is less 

than h c1,y and the surface elevation at the other side must be !arger than zero. 

An element is dry if the water depth is less than a tolerance depth, h c1,y , and no of 

the element faces are flooded boundaries. The element is removed from the 
calculation. 

An element is partially dry if the water depth is !arger than h c1, y and less than a 

tolerance depth, h\l'et , or when the depth is less than the h c1,y and one of the 

element faces is a flooded boundary. The momentum fluxes are set to zero and only 
the mass fluxes are calculated . 

An element is wet if the water depth is greater than h \l'et . Both the mass fluxes and 

the momentum fluxes are calculated . 

The wetting depth, h \l'et , must be !arger than the drying depth , h d ,y , and flooding depth, 

h flood' must satisfy 

hd,y < h ß ood < h,,.,t 

The default values are h c1,y = 0.005 m , h flood = 0.05 m and h wet = 0.1 m . 

Note, that for very small values of the tolerance depth, h \l'et , unrealistically high flow 

velocities can occur in the simulation and give cause to stability problems. 

(3 .26) 
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4 Infi ltration and Leakage 

The effect of infiltration and leakage at the surface zone may be important in cases of 
flooding scenarios on otherwise dry land . lt is possible to account for this in one of two 
ways: by Net infiltration rates or by constant infiltration with capacity. 

j-1 j+1 

Surface zone 

Infiltration 

Infiltration zone 

Leakage 

Figure 4.1 Il lustration of infi ltrat ion process 

4.1 Net Infiltration Rates 

The net infiltration rate is defined directly. This will act as a simple sink in each element in 
the overall domain area. 

The one-dimensional vertical continuity equation is solved at each hydrodynamic time 
step after the two-dimensional horizontal flow equations have been solved . The 
calculation of the new water depth in the free surface zone for each horizontal element is 
found by 

H(j) = H(j) - Vin f iltration V) /A(j) 

Where Vintil trat ion (j) is the infiltrated volume in element (j) and AU) the area of the 

element. 

(4 .1) 

lf H(j) becomes marked as dry then element (j) will be taken out of the two-dimensional 
horizontal flow calculations and no infiltration can occur until the element is flooded again . 
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In summary: when using Net infiltration rate an unsaturated zone is never specified and 
thus has no capacity limits, so the specified infiltration rates will always be fully 
effectuated as long as there is enough water available in the element. 

4.2 Constant Infiltration with Capacity 

44 

Constant infiltration with capacity describes the infiltration from the free surface zone to 
the unsaturated zone and from the unsaturated zone to the saturated zone by a simplified 
model. The model assumes the following : 

The unsaturated zone is modelled as an infiltration zone with constant porosity over 
the full depth of the zone. 

The flow between the free surface zone and the infiltration zone is based on a 
constant flow rate, i.e. Vintiltration = Qi · /J.t where Qi is the prescribed flow rate. 

The flow between the saturated and unsaturated zone is modelled as a leakage Q1 

having a constant flow rate, i.e. Vieakage = Q1 • /J.t. 

The simplified model described above is solved through a one-dimensional continuity 
equation. Feedback from the infiltration and leakage to the two-dimensional horizontal 
hydrodynamic calculations is based solely on changes to the depth of the free surface 
zone - the water depth . 

Note that the infiltration flow cannot exceed the amount of water available in the free 
surface water zone nor the difference between the water capacity of the infiltration zone 
and the actual amount of water stored there . lt is possible that the infiltration flow 
completely drains the free surface zone from water and thus creates a dried-out point in 
the two-dimensional horizontal flow calculations. 

The one-dimensional vertical continuity equation is solved at each hydrodynamic time 
step after the two-dimensional horizontal flow equations have been solved . The solution 
proceeds in the following way: 

Calculation of the volume from leakage flow in each horizontal element - Vieakage (j) 

Vieakage (j) = Q, (j) · !::,. t · A (j) 

Vieakage (j) = min(Vieakage (j), Vi(j)) 

Vi(j) : = Vi(j) - Vieakage (j) 

Where Vi(j) is the total amount of water in the infiltration zone and Q1 (j) is the 
leakage flow rate. 

2. Calculation of the volume from infiltration flow in each horizontal element -
Vinfiltration (j) 

Vinfiltration (j) = Qi (j) · !::,. t · A (j) 

VinfiltrationU) = min (VinfiltrationV) ,SCi(j) - Vi(j),H(j) · A(j) 

Vi(j) := Vi(j) + Vinfiltration (j) 

(4 .2) 

(4.3) 

(4.4) 

(4.5) 

(4 .6) 

(4 .7) 
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Where Qi U) is the infiltration rate, sei (j) is the water storage capacity and H (j) the 
depth of the free surface. 

3. Calculation of the new water depth in the free surface zone for each horizontal 
element 

H(j) = H(j) - Vinfiltration CJ)/AU) (4.8) 

lf H(j) becomes marked as dry then element (j) will be taken out of the two-dimensional 
horizontal flow calculations. The element can still /eak but no infiltration can occur until the 
element is flooded again. 

The water storage capacity of the infiltration zone is calculated as 

(4.9) 

Where Zi U) is the depth of the infiltration zone and yU) is the porosity of the same zone. 

In summary, when using Constant infiltration with capacity there can be situations where 
the picture is altered and the rates are either only partially effectuated or not at all : 

lf = H(j) < Hdry on the surface (dry surface) => infiltration rate is not effectuated 

lf: the water volume in the infiltration zone reaches the full capacity => infiltration rate 
is not effectuated 

lf: the water volume is zero in the infiltration zone (the case in many initial conditions) 
=> leakage rate is not effectuated 

Leakage volume must never eclipse the available water volume in the infiltration 
zone, if so we utilise the available water volume in infiltration zone as leakage 
volume 

Infiltration volume must never eclipse the available water volume on the surface, if so 
we utilise the available water on the surface as infiltration volume 
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5 Validation 

The new finite-volume model has been successfully tested in a number of basic, idealised 
situations for which computed results can be compared with analytical solutions or 
information from the literature. The model has also been applied and tested in more 
natural geophysical conditions; ocean scale , inner shelves, estuaries, lakes and overland, 
which are more realistic and complicated than academic and laboratory tests. A detailed 
validation report is under preparation. 

This chapter presents a comparison between numerical model results and laboratory 
measurements for a dam-break flow in an L-shaped channel. 

Additional information on model validation and applications can be found here 

http://www. m i kepowered byd h i. com/down load/prod uct-docu mentation 

5.1 Dam-break Flow through Sharp Bend 

The physical model to be studied combines a square-shaped upstream reservoir and an 
L-shaped channel. The flow will be essentially two-dimensional in the reservoir and at the 
angle between the two reaches of the L-shaped channel. However, there are numerical 
and experimental evidences that the flow will be mostly unidimensional in both rectilinear 
reaches. Two characteristics or the dam-break flow are of special interest, namely 

The "damping effect" of the corner 
The upstream-moving hydraulic jump which forms at the corner 

The multiple reflections of the expansion wave in the reservoir will also offer an 
opportunity to test the 2D capabilities of the numerical models. As the flow in the reservoir 
will remain subcritical with relatively small-amplitude waves, computations could be 
checked for excessive numerical dissipation. 

5.1.1 Physical experiments 

A comprehensive experimental study of a dam-break flow in a channel with a 90 bend has 
been reported by Frazäo and Zech (2002, 1999a, 1999b). The channel is made of a 3.92 
and a 2.92 metre lang and 0.495 metre wide rectilinear reaches connected at right angle 
by a 0.495 x 0.495 m square element. The channel slope is equal to zero . A guillotine­
type gate connects this L-shaped channel to a 2.44 x 2.39 m (nearly) square reservoir. 
The reservoir bottom level is 33 cm lower that the channel bed level. At the downstream 
boundary a chute is placed. See the enclosed figure for details. 

Frazäo and Zech performed measurements for both dry bed and wet bed condition . Here 
comparisons are made for the case where the water in the reservoir is initially at rest, with 
the free surface 20 cm above the channel bed level , i.e. the water depth in the reservoi r is 
53 cm. The channel bed is initially dry. The Manning coefficients evaluated through 
steady-state flow experimentation are 0.0095 and 0.0195 s/m 113

, respectively, for the bed 
and the walls of the channel. 
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The water level was measured at six gauging points. The locations of the gauges are 
shown in Figure 5.1 and the coordinates are listed in Table 5.1. 
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Figure 5.1 Set-up of the experiment by Frazäo and Zech (2002) 

Table 5.1 Location of the gauging points 

Location X (m) 

T1 1.19 

T2 2.74 

T3 4.24 

T4 5.74 

T5 6.56 

T6 6.56 

Y (m) 

1.20 

0.69 

0.69 

0.69 

1.51 

3.01 

5.1.2 Numerical experiments 

48 

Simulationsare performed using both the two-dimensional and the three-dimensional 
shallow water equations. 

An unstructured mesh is used containing 18311 triangular elements and 9537 nodes. The 
minimum edge length is 0.01906 m and the maximum edge length is 0.06125 m. In the 
30 simulation 10 layers is used for the vertical discretization. The time step is 0.002 s. At 
the downstream boundary, a free outfall (absorbing) boundary condition is applied. The 
wetting depth, flooding depth and drying depth are 0.002 m, 0.001 m and 0.0001 m, 
respectively. 

A constant Manning coefficient of 105.26 m 113/s is applied in the 2D simulations, while a 
constant roughness height of 5-10-5 m is applied in the 30 simulation. 
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5.1.3 Results 
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In Figure 5.2 time series of calculated surface elevations at the six gauges locations are 
compared to the measurements. In Figure 5.3 contour plots of the surface elevations are 
shown at T = 1.6, 3.2 and 4.8 s (two-dimensional simulation) . 

In Figure 5.4 a vector plot and contour plots of the current speed at a vertical profile along 
the centre line (from (x,y)=(5 . 7, 0.69) to (x,y)=(6.4, 0.69)) at T = 6.4 s is shown. 
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Figure 5.2 Time evolution of the water level at the six gauge locations . (blue) 3D calculation , 
(black) 2D calculation and (red) Measurements by Frazäo and Zech (1999a,b) 
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Figure 5.3 
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Contour plots of the surface elevation at T = 1.6 s (top), T = 3.2 s (middle) and T = 4.8 
s (bottom). 
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Figure 5.4 
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Vector plot and contour plots of the current speed at a vertica l profile along the centre 
line at T = 6.4 s 
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